Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
理學院
物理學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73905
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.Tseng, Yun-Hsuan
1
search.filters.author.曾云萱
Subject
1
search.filters.subject.LSTM
1
search.filters.subject.MLP
1
search.filters.subject.phase transition
1
search.filters.subject.Potts model
1
search.filters.subject.多層感知器
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2022
1
Has files
1
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.Tseng, Yun-Hsuan
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
方正晶格上二維五態和二態鐵磁性帕茲模型的神經網絡研究
(
2022
)
曾云萱
;
Tseng, Yun-Hsuan
Show more
本論文分為兩個主題,首先,(1)利用簡單且通用的監督式神經網路來研究二維五態和二態鐵磁性帕茲模型在正方晶格上的相變行為,有別於一般的訓練方法[1],神經網路的訓練集是由一維200個晶格點上以人工產生的兩種(0和1)組態所構成的,並將預測結果繪製成輸出向量長度|R ⃗|的直方圖,從圖中看出是否為雙峰分布,進而得知是一階相變或是二階相變。利用這樣簡單的神經網絡模型來探討大型的自旋系統(含有數百萬個自旋),可以得到五態鐵磁性帕茲模型的相變為微弱一階相變。如此龐大的系統,如果是用一般的訓練方法期計算量是普通電腦無法負荷的。 另外,(2)使用長短期記憶模型(LSTM)來產生由蒙地卡羅演算法計算出來的能量密度,結果顯示利用少量的訓練集就可以得到相近的平均值。 本論文部分章節已發表於arXiv:2111.14063。
Show more