Browsing by Author "吳仕傑"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item 二維及三維電子地圖在空間認知差別性度量之研究(2009/10/15-16) 趙豈汶; 吳仕傑; 林嘉豪; 高治中; 雷祖強; 周天穎; 李素馨Item 以正規化概念分析圖呈現兩種不同影像知識特徵差異之研究-以紋理影像及PCA影像為例(2010/05/20-21) 李旻興; 吳仕傑; 李哲源; 雷祖強; 李素馨Item 以網路式3D虛擬物件平臺與空間自相關法探究民眾參與規劃行為之互動關係(私立中國文化大學地理學系, 2012-06-01) 雷祖強; 葉吉雄; 吳仕傑; 李素馨Item 性別在水肺潛水的動機及專業化差異之研究(2009-01-03) 李素馨; 李曉玲; 吳仕傑Item 應用支援向量機技術對於凝視點影像特徵進行水體景觀視覺偏好萃取(2010-03-13) 吳仕傑; 李素馨; 雷祖強; 李哲源Item 應用眼球追蹤技術審視環境偏好與眺望藏匿理論(2009/09/25-26) 吳仕傑; 李素馨; 雷祖強Item 應用眼球追蹤技術度量二維及三維電子地圖空間認知差異性之研究(2010/05/20-21) 趙豈汶; 吳仕傑; 雷祖強; 周天穎; 李素馨Item 應用眼球追蹤技術度量兩種維度地圖空間差異性之研究(2009-10-16) 趙豈汶; 吳仕傑; 雷祖強; 周天穎; 李素馨Item 景觀概念的建構與呈現-以水體景觀為例(2010-09-19) 吳仕傑; 李素馨; 雷祖強Item 眺匿-藏匿理論=視覺偏好?-來自瞳位追蹤的證據(2008/09/19-20) 吳仕傑; 李素馨; 唐大崙; 王彥力Item 結合Bootstrap與SVM技術於土石流潛勢溪流判釋-以陳有蘭溪流域為例(2010/05/20-21) 林沂樺; 雷祖強; 吳仕傑; 李素馨; 白弘杰Item 結合眼球追蹤與影像紋理技術於景觀視覺偏好萃取(2010/05/20-21) 吳仕傑; 李哲源; 李素馨; 雷祖強Item 運用空間知識探勘技術在土石流分類模式建立之研究--以陳有蘭溪流域為例(中華民國水土保持技師公會全國聯合會, 2012-10-01) 雷祖強; 萬絢; 林沂樺; 吳仕傑; 李素馨Item 高中生在學習廣義角的三角函數上的主要錯誤類型及其補救教學之研究(2011) 吳仕傑本研究目的在探討高中生在學過「廣義角的三角函數」的課程之後,會出現哪些錯誤類型。本研究採用二階段評量來診斷高二學生對於廣義角的三角函數的迷思概念,並整理歸納成為錯誤類型,再針對所得的資料進行分析錯誤類型的成因,設計補救教學教材,並進行補救教學活動,來改正學生對於廣義角的三角函數所存在的迷概思念。 根據本研究,高中生在「廣義角的三角函數」的主要錯誤類型可分為以下四大類,共十種: (ㄧ) 不清楚θ的始邊和終邊:(1)誤以為θ是第一象限角,推得180 -θ是第二象限角。(2)無法判斷90 -θ在第幾象限。(3)把θ誤以為是90 +θ,正弦、餘弦無法正確互換。(二)學生對於三角函數以及象限角之間的關係互換無法以自己的舊經驗為基礎,對這個部份做有意義的學習,所以所以在背口訣、背規則的時候出現錯誤。(4)誤以為sin(90 +θ)=-cosθ。(5)誤以為sin(-θ)=sinθ。(6)誤以為sin(180 +θ)=sinθ。(7)誤以為tan(180 +θ)=-tanθ。(8)平面座標的點表示錯誤;無法正確使用廣義角的定義。(三)計算程序上的錯誤:(9)同界角的轉換出現錯誤,只用一個例子說明。(四)將先前的經驗作過度的類推:(10)誤以為直角三角形的斜邊是單位圓的半徑。而造成這些錯誤類型的成因有:誤以為θ都是銳角;受到老師平時教學時假設θ在第一象限影響,誤以為180°-θ一定是第二象限;不知道當sinθ>0時,θ可能在第一象限也可能在第二象限;沒有弄清楚始邊和終邊的位置;受到銳角三角函數定義的影響,將銳角三角函數的定義套在廣義角上;忽略了θ的其他可能;受到一開始學習廣義角的三角函數定義的影響,看到單位圓上的直角三角形,就認定斜邊是1。 就補救教學成效而言,在經過廣義角三角函數的補救教學活動之後,其後測各題的答題正確率皆高於前測,而18題的試題中,有12題的答題正確率提高30%以上(含30%)。參與補救教學的學生,在經過廣義角三角函數的補救教學活動之後,每位學生在後測的答題正確率皆高於前測。就錯誤類型的變化情形來看,10個錯誤類型答題正確率皆高於前測,可見廣義角三角函數的補救教學活動對改善學生在廣義角三角函數常犯的錯誤類型有顯著的成效。 分析後測和延後測的結果來看,答題正確率並沒有太大的差異。就錯誤類型的變化情形來看,答題情形差異不大;學生在延後測中錯誤類型犯錯的人數並沒有大幅的改變,十個主要錯誤類型後測和延後測的P值皆大於0.05,這代表廣義角三角函數的補救教學活動對於學生在廣義角三角函數常犯的錯誤,具有不錯的學習保留效果。