Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "張仲軒"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    基於超聲波的手部動作辨識模型研究
    (2025) 張仲軒; Chang, Michael-Austin
    隨著人工智慧與深度學習技術的快速發展,人體動作辨識在醫療照護、監控系統、人機互動等領域展現出極高的應用潛力。然而,傳統的影像辨識技術多仰賴可見光或紅外線攝影機,不僅容易受到環境光源變化影響,可能還有潛在的隱私疑慮。為解決上述問題,本研究提出一種結合超聲波訊號與深度學習之手部動作辨識模型,利用聲波反射特性來辨識手部動作,從而克服光線限制並提升隱私保護性。本研究使用USB介面的超聲波收音設備,錄製人體動作引發的聲波變化,並透過短時距傅立葉轉換(STFT)將訊號轉換為頻譜圖,以提取含有時頻解析度的特徵,接著使用ResNet-50卷積神經網路(CNN)進行手部動作分類。為驗證本方法之效能,本研究建立了一個包含五種手部動作及一類靜態背景的超聲波資料庫,並透過多位受試者進行測試以評估模型效能。實驗結果顯示,在特定實驗環境下,模型的辨識準確率可達95%;即使在不同受試者的推論測試中,仍能維持92%的表現。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback