Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "曾柏恩"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Applying Theory of Planned Behavior to Test Behavioral Intention to Work Overseas of Taiwanese Civil Engineering Students with Career Self-Efficacy as A Moderator
    (2022) 曾柏恩; Tseng, Po-En
    none
  • No Thumbnail Available
    Item
    基於深度學習之變韌鐵電子顯微影像中MA島的輕量化分割模型
    (2023) 曾柏恩; Tseng, Po-An
    本研究提出一個基於深度學習之變韌鐵電子顯微影像中 MA 島的輕量化分割模型,用於在變韌鐵顯微影像中分割麻田散鐵-沃斯田鐵(MA)島。MA 島在預測變韌鐵的抗衝擊性能中起著關鍵作用。傳統的 MA 島評估依賴專家主觀的意見,限制了評估結果的準確性和一致性。因此本研究透過訓練 MA 島分割模型時時融入不同專家的意見,來實現更客觀和穩定的分割結果。而在實際應用中,處理大量高分辨率電子顯微鏡圖像需要的大量計算資源。因此,本研究將如何輕量化模型作為一個重要的研究方向。本系統利用骨幹網路 (backbone network) 從變韌鐵顯微影像中提取相關特徵,接著使用頭部網路 (head network) 進行 MA 島分割。本研究探索兩種不同的骨幹網路,HRNet 和 Lite-HRNet,並進行輕量化的改良以減少模型的複雜性和提高效率。另外對於兩種骨幹網路本研究皆使用 OCRNet 作為頭部網路。對於 HRNet 的輕量化,通過替換 HRNet 的基本構建塊-ResNet 塊為 ConvNeXt 塊,並刪除某些逐點 (pointwise) 卷積層來輕量化 HRNet,最後使用 ECA 模組增強 HRNet 的性能。在 Lite-HRNet 中,通過用 ECA 模組替換 SW 和 CRW 模組,來降低 Lite-HRNet 的參數量以及計算複雜度。實驗結果顯示改良後的 HRNet 與 OCRNet 的組合相較於原始的 HRNet,參數數量和 FLOPs 分別減少 64% 和 27%,同時 MA 島 IoU 達到 78.14%。改良後的 Lite-HRNet 與 OCRNet 的組合相較於原始的 Lite-HRNet,參數數量和 FLOPs 分別減少 4.6% 和 11.66%,同時保持 MA 島 IoU 為 78.09%。由實驗結果發現,本研究所提出的改良方案,在輕量化的同時仍能保持變韌鐵電子顯微影像中 MA 島的分割準確性。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback