Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "王景用"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    噪聲學習:漸進式的樣本選擇
    (2023) 王景用; Wang, Jing-Yong
    在人工智慧蓬勃發展的年代,深度學習技術在不同的影像辨識工作中,都取得不錯的成果,然而這些計算模型的訓練任務往往都是建立在乾淨資料集上做的實驗。然而創建一個乾淨大型資料集往往都需要龐大的標注成本,甚至在一些大型的開源資料集中也有一些人為的標記錯誤出現。為了降低建構資料集的成本以及錯誤標籤對模型的影響,噪聲學習主要研究如何在有標記錯誤的資料集中訓練出穩定可用的模型。在過去的研究中,篩選乾淨樣本的技術,如高斯混合模型或是JS散度技術,都無法準確將所有的乾淨樣本篩選出來。因此,本文從模型預測穩定度的觀點,結合過去相關研究中加入KNN演算法,利用模型預測的穩定度與樣本特徵的相似度進行多階段的篩選。參考近期論文的設計,在雙模型架構設計下,我們發現在訓練前期KNN模型的預測能力比雙模型的預測能力還要差。為了有效利用雙模型的預測結果和KNN模型,我們用模型預測穩定度的指標,漸進式的使用KNN模型,幫助我們過濾出乾淨標籤以及噪聲樣本。實驗結果可以看到我們的方法在不同的噪聲類型、不同的噪聲率下都能有不錯的表現,證明我們方法的有效性。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback