Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "許玳維"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    結合 Focal Loss 之 CenterNet 於數位彎曲感測器手勢辨識中的類別不平衡對策研究
    (2025) 許玳維; Hsu, Tai-Wei
    在Open-set場景中的手勢辨識應用中,背景資料往往具有數量龐大與高度變異的特性,對模型造成前景辨識上的挑戰。然而,在本研究所使用的數位彎曲感測器中,資料主要反映手指的彎曲與否,背景樣本雖然數量龐大,但變異度相對有限。基於此特性,本研究的問題核心轉為在樣本極度不平衡的情況下,有效抑制背景類別對模型學習造成的主導效應。為解決此問題,本研究提出一套結合 Focal Loss 與 CenterNet 概念的手勢辨識方法,並採用 Sliding Window 技術進行資料切分與時間特徵擷取。Focal Loss 能提升模型對少數前景手勢的關注度,提升前景手勢的學習效果,同時降低背景樣本的干擾。配合以手勢中心時間點為標註依據的設計,強化模型對手勢發生時機的掌握能力。在推論階段,系統設計雙門檻判斷機制進行手勢偵測,並以編輯距離衡量連續手勢序列的整體預測準確度。實驗結果顯示,本研究提出的方法可於高比例背景樣本的資料情境下穩定辨識各類前景手勢,並於連續手勢序列辨識任務中優於傳統交叉熵法,展現出在類別不平衡下的實用性與穩健性。

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback