Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "陳育銘"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    RAG技術的應用與效能評估-以圖書資訊學領域為例
    (2025) 陳育銘; Chen,Yu-Ming
    本研究針對圖書資訊學領域,探討檢索增強生成(Retrieval-Augmented Generation, RAG)技術的應用與效能評估。現有的大型語言模型(如GPT-3)雖展現卓越的文本生成能力,但在面對專業問題時,易受人工智慧幻覺影響,導致生成內容的準確性和相關性不足。RAG技術結合檢索與生成兩個階段,通過檢索外部資料輔助文本生成,提升了內容的專業性與上下文的連貫性,特別適合應用於資訊需求高且專業性強的領域。本研究採用AI生成問題並使用RAG進行回答,結合ChatGPT與人工的評分數據,透過多指標(如F1分數、準確率)對RAG效能進行量化分析。結果顯示,RAG能有效克服傳統LLM在專業領域中的不足,在準確性、相關性和上下文匹配上表現卓越。同時,採用Ragas生成測試集以另一種客觀方式進行評估,進一步驗證RAG技術的效能。然而,研究也發現部分生成回答在忠實度上存在改進空間,特別是在資料支持不足或背景資訊偏差的情境中。本研究證實,RAG技術能顯著提升大型語言模型在圖書資訊學領域文本生成的質量,為專業問題解決提供了更準確與可靠的工具,並為相關領域的研究與應用提供了重要的參考依據。

DSpace software copyright © 2002-2026 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback