Browsing by Author "Hsu Hao Chen"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 使用結構性輸出之機器學習方法於電影精彩度預測(2013) 許浩禎; Hsu Hao Chen在多媒體內容分析領域的近期研究中,針對時間事件的偵測成為了廣泛探討的議題。一個可靠的時間事件偵測技術存在著許多的應用,例如個人視角的生活觀察及預測大範圍災害持續時間等。從這些應用中,我們可以發現早期事件偵測(Early event detection)也漸漸受到重視。對於人們在觀賞電影時,可以很自然地了解到接下來的劇情將要進入精彩,如果可以讓機器也能如人類感知般,了解到電影的精采度變化,將是一件有趣的工作。在本論文中,我們提出一個藉由機器學習模型 結構性輸出支持向量器 (Structured Output SVM) 的方法實現電影上的精采度偵測器,有別於傳統 SVM的輸出侷限於一個數字或一個標籤,Structured Output SVM的輸出格式可以是一個複雜的結構物件,例如是一張圖片、一個框架或是一段時間區間等等。在預測精彩片段的學習上,Structured Output SVM提供了更有彈性的輸出,使我們能夠更直接的解決問題。在本篇論文中,我們利用電影動作片進行實驗,並透過此模型所計算的信心度自動的辨識出精彩場景。