Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kang, Li-Wei"

Filter results by typing the first few letters
Now showing 1 - 9 of 9
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A novel non-negative matrix factorization technique for decomposition of Chinese characters with application to secret sharing
    (2019-08-14) Lin, Chih-Yang; Kang, Li-Wei; Huang, Tsung-Yi; Chang, Min-Kuan
    Abstract The decomposition of Chinese characters is difficult and has been rarely investigated in the literature. In this paper, we propose a novel non-negative matrix factorization (NMF) technique to decompose a Chinese character into several graphical components without considering the strokes of the character or any semantic or phonetic properties of the components. Chinese characters can usually be represented as binary images. However, traditional NMF is only suitable for representing general gray-level or color images. To decompose a binary image using NMF, we force all of the elements of the two matrices (obtained by factorizing the binary image/matrix to be decomposed) as close to 0 or 1 as possible. As a result, a Chinese character can be efficiently decomposed into several components, where each component is semantically unreadable. Moreover, our NMF-based Chinese character decomposition method is suitable for applications in visual secret sharing by distributing the shares (different character components) among multiple parties, so that only when the parties are taken together with their respective shares can the secret (the original Chinese character(s)) be reconstructed. Experimental results have verified the decomposition performance and the feasibility of the proposed method.
  • No Thumbnail Available
    Item
    基於 SwinTransformer 及深度學習網路之高光譜影像融合
    (2023) 李沃晏; Li, Wo-Yen
    高光譜影像(Hyperspectral Image)以及多光譜影像(Multispectral Image)融合常被用來解決高光譜影像問題,旨在融合低解析度高光譜影像(LRHSI)以及高解析度多光譜影像(HRMSI),是目前最常見的方法之一,通常高光譜影像的空間解析度較低,且直接取得高解析度之高光譜影像具有高昂的成本,而透過融合獲取高解析度高光譜影像是一種經濟實惠的方法。在影像處理領域融合方法是一種關鍵技術,因為高解析高光譜影像很好的促進了遠程材料辨識及分類任務,從而在衛星遙感領域獲得很大的關注。在衛星遙感領域很少有人嘗試使用Transformer,而Transformer在很多高級視覺任務中表現出驚人的成果,在本文中,我們提出了處理HSI/MSI融合任務的網路模型,基於SwinTansformer以及深度卷積網路(DCNN)之融合網路,稱為SwinDFN,SwinDFN由兩個部分組成:1)傳統卷積神經網路對HSI以及MSI影像初步融合,其中引入了Depthwise卷積技術來更有效地結合 HSI 和 MSI 之間的光譜響應函數以及對網路參數量做壓縮,2)具有殘差結構的SwinTansformer特徵提取模塊,來對影像特徵做增強,所提出之方法實現了基於規模較小的網路達到較好的HSI/MSI融合性能。
  • No Thumbnail Available
    Item
    基於變分自動編碼器之解糾纏模型設計與應用:單細胞RNA定序之聚類與細胞擾動之預測
    (2022) 陳則光; Chen, Ze-Guang
    在今天,深度網路已經應用於許多領域,包含產業界以及科學研究中,然而雖然深度網路可以自動生成出許多特徵已擬合出我們要求的結果,這些特徵卻難以被人類解讀。 當模型得出結果時,我們往往難以理解其是如何得出該結果以進行驗證其合理性,本研究的目標為設計可生成出更有解釋性特徵的基於變分自動編碼器模型,首先我們提出了可估計模型生成的特徵間的訊息相關性的方法,並藉此調控訓練過程中的超參數以使模型生成彼此訊息相互獨立的解糾纏特徵,並證明了使用這些解糾纏特徵可有效提升單細胞RNA定序的聚合正確度,本論文也提出了透過解開擾動不變訊息以預測細胞經擾動後的狀態,實驗證明這不只可以提升預測準確度,而且可以提供預測的根據,並可在某種程度上預測細胞經擾動前的狀態。
  • No Thumbnail Available
    Item
    基於雙重注意力機制之視網膜血管分割深度學習網路
    (2024) 胡景閎; Hu, Jing-Hung
    眼底影像之血管分割可以用來協助眼睛病灶的觀察,以提早發現病灶並進行治療,例如黃斑部病變、糖尿病視網膜病變、青光眼等等。由於眼底影像的採集會經過各種不同的程序而導致影像有不同的品質變化,眼底影像血管分割的精確度會影響病灶的判斷,儘管現今已存在許多影像分割方法,但是具有病灶的眼底圖像血管分支變化多端,現存各種分割方法的精確度也依舊無法達到完美,本研究目的為提出改良式眼底影像的血管分割方法,針對各種視網膜圖像,進行精確血管分割,以協助醫師對眼疾病變的診斷,期能對眼疾醫療做出微薄的貢獻。準確的血管分割是一項具有挑戰性的任務,主要是因為眼底影像的對比度低以及血管形態結構的複雜性,傳統卷積會增加乘法的數量,同時執行卷積操作,導致與細長且對比度低的血管相關信息損失。為了解決現有方法在血管提取時低敏感度以及信息損失的問題,本研究提出結合兩種注意力模型EPA以及DLA的並行注意力U-Net以實現準確的血管分割,EPA聚焦於空間以及通道的特徵提取,而DLA則專注於多尺度的局部特徵以及邊緣檢測的特徵,再將並行所得特徵進行深度和淺層特徵融合。本研究在DRIVE數據集上進行實驗,以驗證模型性能,研究結果指出,採用並行運算的U-Net模型分割視網膜血管具有競爭性效能。
  • No Thumbnail Available
    Item
    基於雙重注意力機制之逆半色調深度學習網路
    (2024) 李汪翰; Lee, Wang-Han
  • No Thumbnail Available
    Item
    基於雨嵌入一致性和注意力機制之單張影像去雨
    (2023) 黃冠樺; Huang, Kuan-Hua
    由於數位媒體的快速發展,影像處理的技術越來越受到人們的重視。不過由於影像資料之來源非常廣泛且品質難以控制,往往會有不同種因素的干擾,包括障礙物、光源、天氣等等,造成影像品質過低,可能會使其相關應用之效能大打折扣,甚至毫無用途。因此,為了解決這些難題,人們投入數位影像品質回復或強化的研究,在近些年來取得明顯的提高影像判讀性及可視性,還能幫助提高物件偵測的準確率。而在我們日常生活中,下雨是最常出現的情況,造成不管是拍攝影像或影片,都會因為雨水而造成影像不清晰。在目前現有的研究方法裡,有使用深度學習、多尺度、Transformer模型等影像去雨方法。其中在使用編碼器解碼器的去雨方式裡,通常是根據輸入的有雨影像來預測雨層。因此,編碼器解碼器的網路架構引起了廣泛的關注。但由於在編碼器階段需要提取影像裡有雨的特徵,而在提取的效果及精確度就很重要。為了解決這個問題,許多論文會加上各種模塊來提升提取的效果。為了解決上述問題,本篇論文提出一個編碼器解碼器網路架構, 並且加上注意力模塊,使其在編碼器階段可以提取更多更準確的有雨特徵,且在編碼器解碼器裡常用的跳躍連接也改成注意力機制的模塊,以讓編碼器提取的特徵可以加強傳遞,使得解碼器可以更為準確預測雨層。在實驗階段,我們使用了多個知名影像資料集,包括Rain100H、Rain100L以及Rain800來訓練及測試所提出的網路架構效果。
  • No Thumbnail Available
    Item
    基於非監督式生成對抗網路及對比學習之水下影像品質回復
    (2023) 宋奕泓; Sung, Yi-Hung
    近年來水下環境之相關應用的重要性與日俱增,比如:水下資源探勘及水下環境監控。這些應用往往需要由水下無人載具來擷取水下數位影像資料以供後續之資料分析及其相關應用 (例如:水下物件偵測及水下影像分類等相關應用)。然而水下影像品質受到許多環境因素影響而造成影像退化,包括光線折射、反射等等,如此可能使得基於水下影像之相關應用無法得到良好的效果。近年來,隨著深度學習技術蓬勃發展,研究者提出許多基於深度學習的模型來改善水下影像的品質。目前現有方法中,以具備成對影像資料之監督式深度學習模型為主。成對影像學習雖然能以較輕量模型得到好的影像品質回復效果,但礙於現實難以取得成對的原始水下影像及其還原之陸上影像,因此模型訓練上受到許多限制。為了解決這個限制,許多研究以人工合成之影像來建立成對之訓練影像資料集。然而,人工合成之訓練影像資料集未必能反映真實的水下影像特性。為了解決此問題,最近已有研究提出使用生成對抗網路及非成對影像資料來進行深度學習網路訓練。本論文提出一基於非成對影像資料及生成對抗網路之深度學習模型,來處理水下影像回復的問題。本論文提出基於非成對訓練影像資料集及利用生成對抗網路架構訓練一影像領域轉換生成器將輸入之水下影像轉換為對應之陸上影像 (回復之水下影像),其中我們利用對比學習及多樣損失函數來進行網路訓練。實驗結果已證實我們的方法可得到較佳的回復影像品質且優於 (或近似) 現有基於成對/非成對訓練資料之基於深度學習之水下影像回復網路。
  • No Thumbnail Available
    Item
    基於非監督式跨領域深度學習之單張影像雜訊去除
    (2022) 蔡洪弦; Tsai, Hong-Xian
    數位多媒體資料於我們的日常生活中已無所不在,尤其以影像及視訊資料為大宗,例如:隨時隨地皆有無法計數之影像資料來自各類行動裝置及無所不在之路邊監視器。這些龐大之影像資訊可能帶來日常生活中大量的應用。然而,影像資料之來源非常廣泛且品質難以控制。影像品質過低可能會使其相關應用之效能大打折扣,甚至毫無用途。因此,數位影像品質回復或強化已為一重要之研究議題。近年基於深度學習技術的快速發展,已有許多基於深度學習網路之影像品質回復技術問世。然而,目前架構大多基於端對端之監督式學習且利用人工合成之訓練影像資料集。其主要問題為以人造訓練資料所訓練之網路未必適合於真實世界之影像品質下降問題,且真實低品質影像及其高品質版本配對之資料集卻難以取得。因此,最近基於跨領域 (cross-domain) 之深度學習已被研究來解決可能之領域間隔閡的問題。本論文提出研究基於跨領域深度學習之影像品質回復技術,並嘗試解決目前方法潛在的可能問題,例如:(1)有限的一般化特性:可能使得現有方法難以適用於不同種類的影像;(2)領域偏移問題:對於無成對訓練資料之非監督式學習,可能會因不容易學到好的影像特徵表示法及因為低品質影像之影像雜訊變異過大的關係導致領域偏移;及(3)不明確之領域邊界:當訓練影像之雜訊變異過大及影像內容過於複雜且無成對訓練資料時,低品質及高品質影像間的領域界線不明,使得不易達成良好之跨領域學習。為了解決上述問題及考慮其實際應用,本論文提出一基於跨領域非監督式深度學習之影像雜訊去除網路架構。我們的目標為根據輸入之雜訊影像資料集學習影像特徵表示法,並使得此表示法能貼近乾淨影像之特徵表示法,以期達到更佳的影像品質回復。本論文提出利用雙向生成對抗網路將非成對之訓練影像分別做雙向之影像轉換 (雜訊轉換成乾淨影像及乾淨轉換成雜訊影像),並使用多項影像空間域及影像頻率域之損失函數以訓練一影像雜訊去除 (或噪聲去除) 深度學習網路。在實驗階段,我們使用了多個知名影像資料集 (CBSD68、SIDD及NIH-, AAPM- and Mayo Clinic-sponsored Low Dose CT Grand Challenge) 來訓練及測試所提出的深度學習模型。實驗結果已證實所提出的方法優於傳統基於非深度學習及近年具代表性之基於深度學習方法且適合用於解決實際問題。
  • No Thumbnail Available
    Item
    用於高光譜和多光譜影像融合的知識蒸餾師生網路
    (2023) 倪至謙; Ni, Chih-Chien
    近年來隨著太空探索的技術進步,太空遙測與感知領域變得越來越熱門。因為高解析度的高光譜影像在光譜帶上擁有更多的訊息,這些訊息對於遙測領域應用有很大的幫助,然而直接獲取高解析度高光譜影像會對硬體造成巨大的負擔。因此替代的方式是取得相同條件下的高解析度多光譜影像與低解析度高光譜影像,藉由此兩種影像的融合來獲得高解析度的高光譜影像。在本論文中,先是使用成對的高光譜和多光譜影像資料訓練一個較複雜的網路生成高解析度的多光譜影像和低解析度的高光譜影像融合結果,使用具有卷積感受野重複運用的RFRM模塊提取光譜訊息,再與多光譜影像擁有的空間信息融合生成最終結果。接著為了降低網路的大小,引入知識蒸餾的教師–學生架構建構一個小型的學生模型,讓學生模型去學習教師模型的特徵和資料集的訊息,進而達到效能與教師差距不大、但在速度以及模型複雜度上都優於教師模型的多光譜高光譜融合模型。經實驗顯示我們的蒸餾效果在影像融合成效上有很好的結果,並且在運行速度上相較教師網路快了近1.5倍,參數量則減少為原本的0.54倍。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback