Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kao, Hsin"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    視覺類比量尺的診斷分類模型
    (2024) 高欣; Kao, Hsin
    視覺類比量尺(visual analogue scale, VAS)使受試者根據題目的敘述,在連續的視覺化量尺上進行標記,來反應受試者於試題欲測量潛在特質的傾向。由於VAS具有等距的特性,因此相較於間斷量尺(如李克特量尺),VAS在個體層面上得以提供更細緻的區辨度。鑒於目前所知的文獻中並未有針對VAS資料的診斷分類模型(diagnostic classification model, DCM),因此本研究旨在發展針對VAS資料的DCM。由於VAS資料為連續且具有雙邊界(doubly bounded)特性,本研究透過結合beta response model (BRM)以及log-linear cognitive diagnosis model(LCDM)組成針對連續雙邊界資料的beta diagnostic classification model (BDCM),並以馬可夫鏈蒙地卡羅(Markov chain Monte Carlo, MCMC)作為模型參數的估計方法。模擬研究中透過操弄特質數以及樣本數比較兩種模型:(1)應用BDCM於VAS資料以及(2)使用LCDM於二分資料,比較兩者之間試題參數回復以及分類準確率的差異。研究結果顯示,在試題參數回復上,BDCM所需的樣本小於LCDM,且在分類準確率上BDCM也優於LCDM。實徵研究針對Holland職業代碼(Holland code)發展的VAS職業興趣量表進行分析,並針對受試者的特質分類進行探討。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback