Browsing by Author "Shih, Chan-Ching"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item 視覺式智慧型高爾夫揮桿動作姿勢分析系統(2022) 石展兢; Shih, Chan-Ching全球參與高爾夫這項運動的人口數量正在逐步上升,根據世界高爾夫管理機構皇家古老高爾夫俱樂部(The R&A)公布2021年的全世界高爾夫球人數為6,660萬人,超越了2012年的6,160萬人來到歷史高點,可見高爾夫球己經成為全世界普及的運動。近年來運動科技興起,將運動與科技兩者相互結合,利用智慧化訓練能夠有效幫助運動員提升訓練品質並降低運動傷害發生。本研究以高爾夫運動為基礎,為避免高爾夫揮桿姿勢錯誤導致運動傷害,因此開發出一套視覺式智慧型高爾夫揮桿動作姿勢分析系統,讓使用者能夠隨時隨地將自身和教練兩者的高爾夫揮桿姿勢相互比較,可達到自行修正高爾夫揮桿姿勢之目的。 視覺式智慧型高爾夫揮桿動作姿勢分析系統輸入使用者之高爾夫揮桿影片以及教練之高爾夫揮桿影片進行高爾夫揮桿姿勢比對分析。本系統主要分為兩大步驟:高爾夫揮桿分解動作擷取以及三維人體模型姿勢比對分析。在第一步驟中,本研究使用輕量級網路ShuffleNetV2和循環神經網路Bi-GRU進行改良後擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作。在第二步驟中,利用擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作分別建構出可以表現出豐富人體資訊的三維人體模型,接著使用三維人體模型進行使用者以及教練的高爾夫揮桿姿勢比對分析。 本研究將高爾夫揮桿動作拆解成八個分解動作,依序是擊球準備(address)、起桿(toe-up)、上桿(mid-backswing)、上桿頂點(top)、下桿(mid-downswing)、擊球(impact)、送桿(mid-follow-through)以及收桿(finish)。本研究使用GolfDB資料集[Mcn19]所蒐集的高爾夫揮桿影片進行訓練及測試,實驗結果顯示高爾夫揮桿分解動作擷取之準確率為86.15%。另外,本研究採用之三維人體模型是由6,890個節點所組成的人體網格,該模型將人體分解成24個身體部位,實驗時利用該模型之擬真人體特性能夠更精準地判斷使用者及教練之高爾夫揮桿姿勢差異。如上所述,本研究所提出之視覺式智慧型高爾夫揮桿動作姿勢分析系統具有效性。