Browsing by Author "Wu, Yu-Te"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine(2013) Yeh, Chia-Lung; Lee, Po-Lei; Chen, Wei-Ming; Chang, Chun-Yen; Wu, Yu-Te; Lan, Gong-YauItem 多重樂器自動採譜之探討(2020) 吳宥德; Wu, Yu-Te自動音樂採譜 (Automatic Music Transcription, AMT)是音樂資訊檢索 (Music Information Retrieval, MIR)中最重要的任務之一,由於其訊號的複雜性,它已被視為訊號處理中最具挑戰性的領域之一。在許多 AMT 任務中,多樂器採譜任務是通用採譜系統的關鍵步驟之一,但相關領域的研究卻很少。模型必須在一首樂曲當中,同時辨識多種樂器和其相應音高,而其中包括了不同樂器的各種音色和豐富的諧波(Harmonics),可能導致訊號彼此相互干擾,造成更為複雜的情況,因此與傳統的單樂器採譜研究相比,多樂器採譜成為了一個更進階且複雜的問題。除了存在技術本質上的困難,統整與協調不同層次的採譜問題、處理複雜的交互影響,也需要更加清晰與明確的問題定義,並針對最後的結果發展一套有效的評估方法。 在這項研究中,我們提出了一個多樂器自動採譜的方法。藉由發展一套從訊號層級的特徵工程、到最終評估結果的端到端流程,整合了多項技術以更好的處理此複雜的問題。當中結合了能夠清楚顯現音高特徵的訊號處理技術、新穎的深度學習模型,以及從多目標識別(Multi-object Recognition),實例分割(Instance Segmentation)、計算機視覺中,圖到圖轉換所激發出來的概念,進一步整合新發展的後處理演算法,提出來的系統對於多樂器採譜中的所有子任務,呈現出通用彈性且十分有效率的表現。在針對不同子任務進行綜合評估後,於各項指標上皆表現出了至今為止最優的結果,其中包括了過去從未被研究的多樂器音符層級採譜任務(Note-level Transcription)。