Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yang, Ping"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    開放領域中文問答系統之建置與評估
    (2021) 楊平; Yang, Ping
    近年來隨著人工智慧技術日新月異,答案抽取式機器閱讀理解模型在 SQuAD 等資料集上已可超出人類的表現。而基於機器閱讀理解模型,加入了文章庫以及文件檢索器的問答系統架構,亦取得良好的成績。然而這樣子的資料集測試成效於實際應用上,可以達到什麼樣的效果是本研究好奇的問題。本研究主要進行了兩個任務,第一個為開發並比較不同的問答系統實作方式,以資料集自動化測試的方式評估何種實作方式的成效最好。第二個為將自動化測試表現最好的問答系統,交由受試者進行測試,並對實驗結果進行分析。最終得到的結果有四個。第一,本研究以中文維基百科做為文章庫;以Elasticsearch作為文件檢索器;以Bert-Base Chinese作為預訓練模型,並以DRCD資料集進行訓練的Sentence Pair Classification模型作為文件重排序器;以MacBERT-large作為預訓練模型,並以DRCD加上CMRC 2018資料集進行訓練的答案抽取式機器閱讀理解模型,作為文件閱讀器。此問答系統架構可以在Top 10取得本研究實驗的所有系統當中最好的成效,以DRCD Test set加上CMRC 2018 Dev set進行測試,得到的分數為F1 = 71.355,EM = 55.17。第二,本研究招募33位受試者,總計對系統進行了289道題目的測試,最終的成果為,在Top 10的時候有70.24%的問題能被系統回答,此分數介於自動化測試的F1與EM之間,代表自動化測試與使用者測試所得到的結果是相似的。第三,針對29.76%無法得到答案的問題進行分析,得到的結論是,大部分無法回答的原因是因為無法從文件庫中檢索正確的文章。第四,Top 1可回答的問題佔所有問題中的26.3%,而Top 2 ~ 10的佔比為43.94%。代表許多問題並非系統無法得出解答,而是排序位置不正確,若能建立更好的答案排序機制,將能大幅提升問答系統的實用性。

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback