教師著作
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/37076
Browse
6 results
Search Results
Item FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar Cells(Wiley-VCH Verlag, 2013-06-24) Y.-C. Wang; D.-Y. Wang; Y.-T. Jiang; H.-A. Chen; Chia-Chun Chen; K.-C. Ho; - H.-L. Chou; Chun-Wei ChenCalligraphic counter electrodes: An important photovoltaic application using FeS2 nanocrystal (NC) pyrite ink to fabricate a counter electrode as an alternative to Pt in dye-sensitized solar cells is demonstrated. FeS2 NC ink exhibits excellent electrochemical catalytic activity and remarkable electrochemical stability. ITO=indium-doped tin oxide.Item Solution-Processable Pyrite FeS2 Nanocrystals for the Fabrication of Heterojunction Photodiodes with Visible to NIR Photodetection(Wiley-VCH Verlag, 2012-07-03) D.-Y. Wang; Y.-T. Jiang; C.-C. Lin; S.-S. Li; Y.T. Wang; Chia-Chun Chen; C.-W. ChenA heterojunction photodiode with NIR photoresponse using solution processable pyrite FeS2 nanocrystal ink is demonstrated which has the advantages of earth-abundance and non-toxicity. The device consists of a FeS2 nanocrystal (NC) thin film sandwiched with semiconducting metal oxides with a structure of ITO/ZnO/FeS2 NC/MoO3/Au, which exhibits an excellent photoresponse with a spectral response extended to NIR wavelengths of up to 1150 nm and a high photocurrent/dark current ratio of up to 8000 at -1 V under AM1.5 illumination (100 mW cm−2).Item Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS(2) nanocrystals embedded in poly(3-hexylthiophene)(IOP Publishing, 2011-07-27) C.-W. Lin; D.-Y. Wang; Y. Tai; Y.-T. Jiang; M.-C. Chen; Chia-Chun Chen; Y.-J. Yang; Y.-F. ChenElectrical bistable behaviour was demonstrated in memory devices based on n-type FeS2 nanocrystals (NCs) embedded in a p-type poly(3-hexylthiophene) (P3HT) matrix. An organic/inorganic hybrid non-volatile memory device with a type-II band alignment, fabricated by a spin-coating process, exhibited electrical bistable characteristics. The bistable behaviour of carrier transport can be well described through the space-charge-limited current model. The small amount of FeS2 NCs in this device serve as an excellent charge trapping medium arising from the type-II band alignment between FeS2 and P3HT. Our study suggests a new way to integrate non-volatile memory with other devices such as transistor or photovoltaic since the presented FeS2/P3HT offers a type-II band alignment.Item Enhanced Infrared Light Harvesting of Inorganic Nanocrystal Photovoltaic and Photodetector on Graphene Electrode(American Institute of Physics, 2011-06-27) C.-C. Lin; D.-Y. Wang; K.-H. Tu; Y.-T. Jiang; M.-H. Hsieh; Chia-Chun Chen; C.-W. ChenWe demonstrate an enhancement of infrared light harvesting of inorganic PbSnanocrystalphotovoltaic and photodetectordevices based on the transparent grapheneelectrode. Due to high infrared transparency of the grapheneelectrode with respect to indium tin oxide (ITO), the infrared photoresponse of the graphene-based device is superior to the ITO-based counterpart, in spite of a higher sheet resistance of the grapheneelectrode. The outstanding infrared characteristics of the devices based on the grapheneelectrode make it a promising candidate for infrared optoelectronic applications such as solar cells, imaging and sensing, or optical communication.Item Efficient Light Harvesting by Photon Downconversion and Light Trapping in Hybrid ZnS Nanoparticles/Si Nanotips Solar Cells(American Chemical Society, 2010-10-26) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Chen; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. ChenA hybrid colloidal ZnS nanoparticles/Si nanotips p−n active layer has been demonstrated to have promising potential for efficient solar spectrum utilization in crystalline silicon-based solar cells. The hybrid solar cell shows an enhancement of 20% in the short-circuit current and approximately 10% in power conversion efficiency compared to its counterpart without integrating ZnS nanoparticles. The enhancement has been investigated by external quantum efficiency, photoluminescence excitation spectrum, photoluminescence, and reflectance to distinct the role of ZnS quantum dots for light harvesting. It is concluded that ZnS nanoparticles not only act as frequency downconversion centers in the ultraviolet region but also serve as antireflection coating for light trapping in the measured spectral regime. Our approach is ready to be extended to many other material systems for the creation of highly efficient photovoltaic devices.Item Efficient light harvesting and carrier transport in PbS quantum dots/silicon nanotips heterojunctions(IOP Publishing, 2011-03-02) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. ChenLight harvesting from nanocomposites consisting of silicon (Si) nanotips and PbS quantum dots (QDs) has been investigated. We show that Si nanotips provide direct carrier transport paths, additional interfacial area and light trapping. We observe that there is a dramatic enhancement in short-circuit current (from 9.34 to 14.17 mA cm−2) with nanotips structure than that of the bulk Si wafer. In addition, with an additional electron blocking layer, the photovoltaic performance can be further increased. The nanocomposites consisting of QDs and Si nanotips therefore open a promising route for efficient light harvesting from visible to infrared with improved power conversion efficiency.