學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73901
Browse
3 results
Search Results
Item 勾股定理證明在中學教材的初探(2015) 方香鈞; Fang, Hsiang-Chun勾股定理不但是幾何學的核心更可應用到相當廣泛的領域,而推理與證明是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式,鑑於填補目前中學數學教科書對勾股定理證明的單一性,本研究以延伸數學證明內容,利用魯米斯(Elisha Scott Loomis)所著作的《勾股定理》(The Pythagorean Proposition)書中所蒐集整理的證明當作題材,將勾股定理做分類及介紹,選取其中45個證明去探究,並修補《勾股定理》證明的不完整,以提升中學生的數學證明學習層面為出發點,並與數位教材團隊合作開發互動數位教材,不論是透過書面嚴密的邏輯證明或是多媒體的呈現,目的是為了促進學生的邏輯思考,培養推理能力,也藉此供給中學數學內容更豐富的參考,期望讓學生具體的感受數學之美,更進一步透過網路分享,提升國人的數學素養。Item 勾股定理幾何證明探究(2015) 徐國峰; Hsu, Kuo-Fong本研究旨在探討勾股定理的幾何多樣證明。以學生的角度看勾股定理有兩種不同的表達方式: 1.直角三角形直角邊上的兩個正方形面積之和等於斜邊上正方形的面積(面積 概念的勾股定理) 2.直角三角形斜邊長度的平方等於兩個直角邊長度的平方和(數的勾股定理)。 在數學教學上採用具體操作較能讓學生了解概念,也是學生接受度較高的教學方式,經由本研究分析了魯米斯勾股定理一書中的50個幾何證明,發現其中有些是可以透過拼圖概念,再搭配與團隊開發使用電腦Flash軟體的操作,以加強學生對勾股定理的認識。 國中學生在勾股幾何圖形的拼圖能力表現上,透過平移、旋轉重組圖形的表現明顯優於翻轉組合圖形的能力,而利用圖形之間底與高的長度計算,將長方形面積轉換成平行四邊形面積或兩倍三角形面積,再進一步得到最終的正方形面積,對國中學生來說是可接受的勾股定理幾何證明方法。 本研究所探究的勾股定理幾何證明中,常利用延長線與平行線的輔助切割技巧,也利用全等圖形間轉換元件的拼圖概念,與四邊形推移後可計算出等面積的概念,最終的目標皆是證明斜邊上的正方形面積等於兩股構成的兩個正方形面積之和。 國中學生在勾股定理的幾何證明中,常遇到的挫折有:(一)無法清楚判斷全等關係,(二)難以很快的透過旋轉的動作,判斷出兩圖形的全等,(三)很難明顯判斷出兩圖形面積轉換時的底高相對位置。希望透過本研究,能擴充在職教師對勾股定理的幾何證明類型,也讓中學生體驗到幾何證明的趣味,將來有助於在數學教學與選修課程中作為延伸的輔助教材。Item 以代數與幾何證明探究勾股定理於中學教材的應用(2017) 黃震川; Huang, Chen-Chuan培養學生的推理能力是中學數學教育的重要理念,而學習證明可以訓練學生的邏輯思考,進而使用正確的理性思維去解決問題。在九年一貫課程綱要中,勾股定理是中學生學習幾何單元的重要核心概念,所以相當適合作為引導中學生學習數學證明的入門課程。本研究以魯米斯(Elisha Scott Loomis)所著作的《勾股定理》(The Pythagorean Proposition)書中蒐集的證明為題材,將勾股定理做整理與介紹,選取其中45個證明去深究,並增補《勾股定理》證明中不完整的部分。希望藉由提供不同於現行三個版本的教科書的勾股定理證明,讓中學教師在教學上能有更豐富的參考教材,也讓學生體會不同證法的過程與樂趣。最後並與數位教材團隊合作開發互動數位教材,讓學生可以實際操作動畫軟體,透過圖形的平移與旋轉,明瞭複雜的勾股定理拼圖證明,也冀望藉此提升學生的學習動機,使他們感受到勾股定理與幾何學的美妙之處。