學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73901
Browse
2 results
Search Results
Item 高中生學習平面向量素養導向課程之情形(2019) 陳柏宇; Chen, Bo-Yu本研究欲探討高中學生學習平面向量素養導向課程之情形,包含學習前後數學素養之展現和新單元數學內容之學習遷移情形。 本研究屬質性研究,研究者設計一份課程用學習單,以培養數學素養和平面向量單元內容教學為主要的兩個目標,與兩位協助研究進行的原班教師進行溝通後,實際進入課堂教學。教學結束後會回收學習單,並從學習單上的內容進行歸納分析。研究樣本為台北市兩所公立高中各兩班,一所學生程度頂尖而另一所為高程度,共110位學生。 部分研究結果如下:在教學前,不分學校多數學生(約佔六成多)用來表示象棋馬移動的自有表徵為以直線表達移動路徑、以刻度或格子表達長度,並在終端加上箭頭表達方向的擬動態圖像表徵,此表徵與向量的幾何表示法相當接近;而坐標表示法使用人數僅一人。在教學後,所有學生都轉換為使用向量的幾何表示法與坐標表示法,且在單純表示象棋馬移動時幾乎都使用正確。 本研究透過學生回答情境題的情形觀察學生數學素養之展現,研究者發現學生使用的證明策略明顯地影響了整體答題狀況,且程度不同的學生所用證明策略差異甚大。頂尖程度的兩班在學習前使用分析證明策略的學生占三成多,學習後占四成多;而高程度的兩班在學習前後使用分析證明策略的學生均不到一成。頂尖程度的兩班教學後使用了向量概念來輔助完成證明的學生約佔五成多,而高程度的兩班則不到一成。 主要在情境中進行的教學之後,頂尖程度、高程度學生未經純數學例題示範能正確回答「向量平移概念題」分別約占近九成、五成多;而「向量分解概念題」則視分解的複雜度分別約占五成到八成、二成多至五成。 關鍵詞:數學素養、平面向量、學習遷移Item 高一學生以圖形表徵或定義表徵學習對數概念之學習情形異同(2018) 劉軒豪; Liu, Hsuan-Hao本研究之目的在於探討以不同的方式引出對數概念,高一學生的學習情形比較。並藉由學習情形的分析,提供教師在教授對數概念時方式選用的依據。 研究者分別對兩個班級設計以圖形表徵及定義表徵為主軸的教學實驗,實驗採用準實驗設計中的平衡對抗的設計(Fraenkel, wallen,& Hyun),實驗對象為研究者任教的新北市某公立高中80名高一學生。 實驗均在各班當天連續兩節課內完成,教學分成「單一表徵引入階段」、「第二表徵加入階段」及「熟練性質階段」三個階段,施測題目共計23題。 單一表徵引入階段「以不同的表徵引出對數概念」為主軸,探究學生以圖形表徵與定義表徵兩種不同方式引出對數概念下的學習情形;第二表徵加入階段「以不同順序介紹兩種不同表徵」為主軸,探究以不同順序介紹圖形表徵與定義表徵下學生的學習情形。熟練性質階段則配合單元教學目標,讓學生的學習更加完整,能夠在學習對數概念之後進一步學習其他對數的性質。 本研究結果如下: 1.兩班學生在總題數23題當中共有17題的答對人數差距在10%以下,並且答對比例均在60%以上;顯示整體學習情形大致相近。 2.學生的答題情形與引出對數概念的「表徵」、學習對數概念的「強度」、過去所學的「舊經驗」及「情意面」相關。 3.不同表徵物化「log_ab」的過程不同,對於「運用對應關係」的理解也有所不同。 4.以圖形表徵引出對數概念的班級,在答題方式的選用上較多元;以定義表徵引出對數概念的班級則較集中。 5.無論引出的方式為何,學生均傾向運用對數定義答題;但兩相比較下,以圖形表徵或定義表徵引出對數概念的班級仍有其特徵。 6.學生對於對數定義範圍的限制,答對比例較低,莫認為學生已學過不等式輕率帶過,建議教師可以在教學安排上加強。 7.不同的表徵具有各自的特徵、優點,多方擷取才能盡善盡美。