學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73901
Browse
5 results
Search Results
Item 摺積型非線性項之網格動態系統研究(2012) 林穎志; Ying-Chih Lin在本篇論文中,我們研究非線性項為摺積型的網格動態系統。本論文分成兩個部份。在第一部分,我們考慮在非線性項為單穩定摺積型的網格動態系統中的行進波,我們討論行進波的漸近行為、單調性及唯一性。在第二部份中,我們考慮在非線性項為雙穩定摺積型的網格動態系統下之雙波峰全域解。我們建構三種不同類型之雙波峰全域解。在當時間趨近負無窮大時,每一種雙波峰全域解的行為近似於連接三個平衡態中的其中兩個平衡態的兩個行進波。Item 網格動態系統的行進波(2010) 吳昌鴻; Chang-Hong, Wu在本論文中,我們要討論在一維度網格中兩物種的競爭模型。此模型是用網格動態系統(Lattice dynamical system)來描述。此模型起源於研究當物種的居住環境是區塊片狀時,有遷移(migration)能力的兩物種之間的競爭。 第一部份,我們考慮單一穩定型(monostable)的情形。我們首先證明存在一個最小的波速(minimal wave speed)使得行進波(traveling wave)存在的充要條件為其波速大於或等於此最小波速。接著,在適當的條件下我們能夠利用系統的參數來刻劃出最小波速。然後,我們證明任何行進波的波形(wave profile)都是嚴格單調的。更近一步,在某些條件下,給定波速後,行進波的波形是唯一的(在不考慮平移的情況下)。最後,在數值的觀點下,我們推論當網孔大小(mesh size)趨近零時,離散型最小波速的收斂性。 第二部份,由於此系統有行進波的存在且此系統滿足比較原理(comparison principle),我們可以造出某種全域解(entire solution),其解的行為像兩個行進波從x軸兩側隨時間向彼此方向移動。 最後一個部份,我們將考慮在雙穩定型(bistable)的情形下,波的傳遞(wave propagation)。我們證明只要系統的兩個遷移係數(migration coefficient)夠小時,其(非單調)穩定解(stationary solution)將會存在。而且,波的傳遞失敗 (propagation failure) 現象會產生。在單一的方程系統中,這樣的結果J.P. Keener, SIAM J. Appl. Math. (1987) 已經提出。接著,我們也證明非零波速的行進波的波形必定是嚴格單調的。更進一步,我們也完整的給出行進波的波形在兩端的漸近行為。於是我們可以給出波速的先驗估計。Item 半線性拋物型方程及其離散化問題之特殊解(2007) 吳菁菁; Chin-Chin Wu在這篇論文裡,我們主要討論的是半線性拋物型方程及其相關離散化問題的特殊解。 在第一個部分,我們討論的是一個微分方程系統,其中的非線性項具有雙穩定性質,且其介質具有離散性和週期性。我們研究的是其對應旅行波解的存在性、唯一性和穩定性。而這樣的一個問題是從一個具有週期性質的半線性拋物型方程問題,將其空間變數離散化而來。我們主要是利用比較原理、算子分析和造出上、下解來得到旅行波解的唯一性和穩定性;並將微分方程轉換成積分方程來得到存在性。 在第二個部分,我們研究的是一個具有初值及邊界條件,且具有強吸收之非線性項的熱方程問題。我們已經知道在某個初始條件之下,這個解在有限時間會產生殆核解,而這個產生殆核解的速度會比一般所謂的自我相似解的速度還快。在一個符合動態原理的假設條件下,利用結合內部與外部展開式的方法,我們在形式上可以得到殆核解的速度。另外,在所對應的柯西問題上,我們造了特殊解使其具有特定的速度且滿足我們動態原理的假設。Item 自動催化反應擴散系統的行進波(2008) 李宜展這篇論文主要是對於行進波在等溫化學反應 A + nB ->(n+1)B (其中A是反應物,B是自動催化劑)的發展作一個概括性的介紹。存在一個最小波速使得行進波解存在的充分必要條件為其波速大於或等於此一最小波速。我們將討論早期研究對於此最小波速的估計。Item Existence and Uniqueness of Traveling Waves for a Monostable 2-D Lattice Dynamical System(2007) 吳昌鴻; Chang-Hong Wu我們研究二維度的單穩定型格子動態系統的行進波。首先我們證明存在一個最小的速度使得行進波存在的充分必要條件是行進波的速度大於或等於此最小的速度。然後我們證明給定一個速度後,在不考慮平移的情況下,行進波的波形是唯一的。更進一步的,我們知道行進波的波形是嚴格單調的。