學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    基於深度強化學習之自動充電系統電腦視覺與機械手臂控制系統發展
    (2024) 謝俊毅; Sie, Jyun-Yi
    隨著科技與電動車技術的蓬勃發展,近年來電動車獲得更多關注,建設更為便利的充電設施已然是電動車主們一大需求。因此本論文提出一主僕式架構之自動充電系統,提供自動充電服務,整體架構由自主移動式充電機器人與電源拖車組成,並搭配本研究設計之充電行為流程、充電插座姿態辨識與使用深度強化學習(Deep Reinforcement Learning, RL)於機械手臂運動控制,最終實現可提供充電服務之自動充電系統。本論文於充電插座自動辨識上使用Yolo、PnP等電腦視覺技術,並搭配類神經網路進行座標補償。在機械手臂控制策略上使用深度強化學習之深度確定策略梯度(Deep Deterministic Policy Gradient, DDPG)與近端策略最佳化(Proximal Policy Optimization, PPO)進行模擬實驗,並最終使用PPO搭配PID補償器進行實作,此設計架構可有效補償PPO輸出之穩態誤差,在機械手臂運動控制方面,滿足系統執行自動充電服務的需求。
  • Item
    全向移動平台結合機械手臂動態物件追蹤
    (2024) 邱軒博; Chiu, Hsuan-Po
    全向移動平台(Omnidirectional Mobile Platform)是一種具有全方向移動能力的移動平台,比起傳統的四輪平台更加靈活且複雜。本文自行設計此移動平台並結合機械手臂與影像辨識系統,並整合軟、硬體功能,最後使其能夠模擬一些簡單的人體動作。在機械手臂方面,描述了手臂的運動模型,取得末端的位置座標;在影像辨識上,利用雙目測距取得球體的世界座標;再將機械手臂與雙目估計的座標整合,最後透過拋物線運動方程式以及類神經網路預測其落點。最後通過實驗結果證明所提出的方法可以整合不同的座標系,且可以追蹤球體的座標,及時回傳並移動到預測落點的位置,再控制機械手臂到實際球體落下位置完成接球動作。