學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    28 GHz I/Q調變器與單邊帶混頻器設計
    (2022) 魏庚生; Wei, Geng-Sheng
    隨著第五代行動通訊技術的發展,毫米波升降頻收發機扮演著重要的角色,其中發射機需將基頻訊號升頻至毫米波頻段後,再透過相位陣列(Phased Array)天線進行無線傳輸,因此調變器與混頻器成為不可或缺的元件。近年來得益於互補式金氧半導體製程(CMOS)的進步,CMOS具有低功率消耗、低成本及高整合度的優勢,且已經可以與大部分的射頻電路整合在一塊。本論文將使用TSMC 90-nm CMOS RF製程與TSMC 65-nm CMOS RF製程,設計實現28 GHz I/Q調變器與單邊帶混頻器。第一個電路為28 GHz I/Q調變器,以I/Q調變訊號的方式饋入兩顆混頻器來消除鏡像訊號,並透過加入匹配來達成寬頻的鏡像拒斥比。量測與模擬之特性貼近。當電晶體偏壓為0.35 V,LO驅動功率為3 dBm時,頻帶為25~32 GHz,增益範圍為-9.4 ± 0.5 dB,鏡像拒斥比則有-30 dBc,整體晶片佈局面積為730 μm × 700 μm。第二個電路為28 GHz單邊帶混頻器,藉由給予兩顆混頻器正交訊號,將相位差180°的輸出訊號合成後,會達到鏡像抑制之功能。由於LO端匹配電容對於製程變異相當敏感,因此最後實現的單邊帶混頻器有頻飄的狀況。當電晶體偏壓為0.35 V,LO驅動功率為3 dBm時,頻帶為23~28 GHz,增益範圍為-22.5 ± 0.5 dB,鏡像拒斥比則有-30 dBc,整體晶片佈局面積為755 μm × 730 μm。
  • Item
    38 GHz 單邊帶混頻器與可變增益放大器設計
    (2021) 鄭伊佐; Cheng, Yi-Tso
    隨著5G行動通訊發展,在相位陣列架構的射頻收發器中,混頻器與可變增益放大器為重要元件。而CMOS具有高整合度、低功率消耗、及低成本的優勢,因此本論文使用標準 65nm CMOS 1P9M製程,實現38 GHz單邊帶混頻器與可變增益放大器。第一個電路為38 GHz單邊帶混頻器,藉由準確的饋入兩顆混頻器正交訊號,將兩個相差180°的輸出訊號合成後,達到寬頻鏡像抑制之功能。當電晶體偏壓為0.4 V,頻帶為31 ~ 40 GHz,增益範圍為-19.8 ± 0.5 dB,鏡像抑制在40 dB的範圍為35~ 40 GHz,整體晶片佈局面積為0.72 mm × 0.8 mm。第二個電路為38 GHz低相位變化之可變增益放大器,採用兩級的電流控制架構,透過數位控制與相位補償技術來維持低相位變化,並加入基極偏壓來提升可變增益範圍。當供應電壓Vdd為1.2 V,在38 GHz有最高增益14.84 dB,可變增益範圍則有14.76 dB,相位誤差為4.62°,整體功率消耗約為20.4 mW,整體晶片佈局面積為0.46 mm × 0.68 mm。