學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73894

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    氧化鋅奈米線應用於發光二極體之研製
    (2009) 趙偉迪; Wei-Di Chao
      發光二極體被視為未來主要的照明光源,高功率發光二極體於技術上屢有突破,但現階段發光效率的不足,使發光二極體無法取代傳統光源作為照明燈源的主流,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,將奈米線應用於發光二極體的結構製作,能有效提升其發光強度;而在各式成長奈米線的方法中,以水熱法製備之奈米線具有高品質順向成長與製程簡易的優點,故本論文將採用此法成長氧化鋅奈米線,並以射頻濺鍍法沉積N型氧化鋅鋁薄膜,P型材料則選用氧化鋅與氮化鎵,藉以製備氧化鋅奈米線發光二極體,進行其特性之研究。  在奈米線的部份,藉由水熱法成功製備氧化鋅奈米線,直徑34 nm-200 nm,長度1 um-2 um,密度4 NWs/um2-68.23 NWs/um2。EDS分析顯示氧化鋅奈米線的鋅、氧比接近50 % : 50 %。XRD分析僅於34度存在繞射峰值,亦即於(002)面有較強之繞射訊號。PL顯示奈米線的發光峰值位於378 nm,並具有微弱之可見光放射。從HRTEM可觀察到,奈米線內部的晶格結構良好,晶格條紋間距為0.2629 nm,証實奈米線為C軸取向成長。   N型氧化鋅鋁薄膜部份,其最佳電阻率為3×10^(-3) Ω-cm,載子濃度為1.72×10^21 cm^(-3),載子遷移率為0.0715 cm2/V-s,於可見光波段的平均穿透率大於80 %,於波長450 nm之最佳穿透率為87 %,於波長380 nm之最佳穿透率為77 %。   P型氧化鋅部份,分別使用氧化鋅及純鋅靶材,嘗試藉由製程氣體氧/氬比例的控制,用以製備P型氧化鋅,但目前薄膜均呈現N型半導體電性。未來將使用摻雜P2O5之氧化鋅靶材,繼續P型氧化鋅薄膜之試驗。   發光二極體部份,目前已於P型氮化鎵(鎂摻雜,載子濃度約為10^17 cm^(-3))薄膜上,成功製備氧化鋅奈米線/N型氧化鋅鋁薄膜結構,並完成發光二極體之晶粒製作,其尺寸為300 um×300 um。在約大於15 V的操作電壓下,以長工作距離顯微鏡可觀察到,發光二極體晶粒的部份區域放射出藍光,且發光強度隨外加電壓而增加。發光二極體之I-V曲線顯示其串聯電阻相當大,未來將以快速熱退火進行後處理,以期提升其性能,並檢測發光頻譜等特性。
  • Item
    水熱法成長氧化鋅奈米線陣列應用於染料敏化太陽能電池
    (2009) 陳冠文
    本研究使用溶膠凝膠法(sol gel method)製備氧化鋅薄膜,作為成長氧化鋅奈米線陣列基底,經退火處理後,可得到高結晶的微小表面顆粒種子層;水熱法(Hydrothermal method)的水溶液環境中利用氧化鋅特有極性表面特性,在同質氧化鋅種子層上成長奈米線陣列,控制反應水溶液濃度以及成長時間,製備出高準直性的奈米線陣列,得到最佳的電極長度與長寬比(L=2300 nm, L/D=46)。在水熱環境中摻雜2 at.%鋁使氧化鋅奈米線增強結晶性,使長寬比由46增加至60.5,改善電極表面形貌,鋁離子的嵌入亦能增強電子傳導性與材料表面極性,使奈米線電極對染料吸附能力增加、抑止ZnO2+/dye錯合物的產生。以更換反應水溶液方式持續成長摻雜鋁奈米線增加體表面積,接續成長方式使電極長度由2.3 m增加至6.6 m,而效率則由0.152%提升至0.834%。摻雜2 at.%鋁氧化鋅奈米線電極,在相似長度下(約6.5 m),改善電池效率由純氧化鋅奈米線陣列的0.492%提升至0.834%。
  • Item
    以水熱法成長氧化鋅奈米結構應用於光電致色變元件
    (2008) 李峻宇
    本研究利用水熱法在透明導電基板上製備出氧化鋅奈米線陣列,再將成長於上的奈米線陣列應用於染料敏化太陽能電池和光電致色變元件並量測其效率。透過改變成長參數和試片前處理,氧化鋅奈米線陣列在表面形貌上有很明顯的不同,當反應起始濃度越高時,氧化鋅的直徑也有增加的趨勢。不同的晶種層也會影響氧化鋅奈米結構的成長,在氧化鋅的晶種層上可以成功的長出垂直於基板的奈米線陣列,氧化鎢的晶種層則會長出二維片狀結構。奈米線的直徑直接影響著染料敏化太陽能電池的效率,當直徑越大時比表面積就越小,可吸附的染料量就會減少。透過氧化鋅奈米線陣列製備而成的光電致色變元件,在經過日光照射後可以改變穿透率,其著去色狀態在可見光區段最高可達16%。
  • Item
    水熱法沉積PZT壓電薄膜應用於微致動器之開發
    (2007) 林宏展
    傳統之陶瓷壓電材料鋯鈦酸鉛(PZT)薄膜,必須使用射頻磁控濺鍍法,或是以溶膠-凝膠法(sol-gel)旋塗後,再經由高溫燒結(650 C-700 C)而成,其生產之製程設備昂貴、薄膜結構製程複雜或經高溫燒結會使微元件受到破壞等缺點。因此,必須發展低溫製程之鋯鈦酸鉛薄膜沉積,以實現低成本微元件之開發。水熱合成法是將化學溶液放置在密閉容器中,加熱至120 ~ 200 C使容器內部達到飽和蒸汽壓力,藉著高溫高壓之環境析出所需之物質。由於水熱法擁有低製程溫度與製造成本,且容易製作厚膜,故本研究使用水熱法來沉積鋯鈦酸鉛薄膜,並且利用此薄膜沉積技術製作壓電式微致動器。 本研究在探討鈦金屬層對於水熱法沉積之特性,利用不同之鈦金屬層厚度觀察其沉積情形;再者,透過低溫之基板前熱處理方式,改善薄膜之附著性;最後嘗試著控制成核及晶體成長之沉積機制改善薄膜之密度。研究結果證實,鈦金屬層於水熱法中是當作沉積之起始層,且鈦金屬層會在開始沉積時提供反應所需之鈦離子,增加鈦金屬層厚度可以加快薄膜沉積速率。本研究成功在1 m之鈦金屬層輔助下,使鋯鈦酸鉛薄膜之沉積速度達到6.20 m / 24 hr,但是鈦金屬層超過1 m後,對於沉積速率並無太大的影響。本研究利用200 C持溫一小時之基板前熱處理條件下,有效的改善鋯鈦酸鉛薄膜之附著性。本研究以提高水熱溶液之反應物濃度,控制薄膜在成核機制下進行沉積之方式,製作出密度為 4.402  103 kg / m3之薄膜。 本研究預期利用發展出之鋯鈦酸鉛薄膜沉積方式,製作懸臂樑壓電微致動器,但遇到矽基材表面之氮化矽覆蓋不緻密,導致矽基材受到KOH攻擊之問題,目前仍致力於保護矽基材之方式進行研究。