學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    以注意力模塊、殘差連接建構之雨量深度學習超解析度模型
    (2023) 江家浩; Chiang, Chia-Hao
    人口的過度增長、土地的開發以及化石能源的消耗在近百年來造成地球氣候的變遷。自然災害發生的頻率也因此增加,並造成許多人類的傷亡以及產業的經濟損失。為了減緩自然的衝擊與資源的消耗,各國政府機關制定了相關政策,以減緩消耗;科學家們研發全新的、乾淨的替代能源,另一方面,氣象學家們則是藉由模型的建構,來模擬並預測這些極端事件的發生,以利人們在災害來臨之前做好準備,減少損失。其中,以水資源的影響最為深遠,它是地球中最基本也是重要的循環之一,同時也是占比最重的溫室氣體,且與人類活動息息相關。我們以台灣為例,台灣雖然年降雨平均高達2,500毫米,然而人均水資源卻是低於全球平均值。這是因為台灣的崎嶇地形特色所致,再加上季風與洋流的作用,使得降水的時空間分布不均。若能預測雨量的分布,則可訂定相關的防洪或者儲水建設,以降低災害並最大化水資源的利用,故一個準確且高解析度的預測模型一直是科學家們努力研究的方向之一。現今普遍的做法是將氣象模型的模擬資料做降尺度來提升解析度以供區域性的參考。然而這些預測模型所消耗的計算資源甚鉅,且解析度有限,很難提供疆域小且地形交互作用複雜的地區有準確的預測結果。我們提出了一個以深度學習為基礎,並結合殘差連接、注意力模塊的超解析度模型,可望提升現有的氣象模型所產出之低解析度的結果之準確性和解析度。文末,我們也比較了其他氣象降尺度的方法和其他機器學習為基礎的模型,並在四種指標(平均絕對誤差、方均根誤差、皮爾森係數、結構相似性)、定量降雨預報檢測中優於其他氣象降尺度的方法。
  • Item
    基於人體姿勢估計之跆拳道側踢分析
    (2023) 翁驊成; Weng, Hua-Cheng
    在跆拳道品勢 (Taekwondo Poomsae) 比賽或訓練中,評估該運動表現唯基於專家及教練的觀察,並根據其自身經驗會有不同的想法,存在多種公平性問題,此外,教練也無法全天候指導所有學員,人們對於量化評價方法和工具之需求日益增加。然而,跆拳道快速的肢體動作與結構極端繁複的技術,使量化困難且不易評估。跆拳道品勢單元技術中,側踢 (Side Kick) 屬於較複雜、評分比重較高的項目,因此,本論文針對側踢先行試驗,我們以臺北市立龍山國中以及國立臺灣師範大學的跆拳道品勢選手作為研究對象,並參考專家建議之評分標準,提出基於人體姿勢估計 (Human Pose Estimation) 之跆拳道側踢分析,通過專業認證的跆拳道側踢評分系統 (Taekwondo Side Kick Assessment System, SideKick),能夠有效地量化選手運動數據,分析並評估其側踢表現。 本研究中,我們首先建立了具高度公信力的跆拳道側踢資料集,由專業品勢教練進行動作質量評分;接著透過人體姿勢估計的方式,偵測人體關節點座標,精確獲取肢體運動角度及高度變化數據,使得運動特徵不易受場景影響,將攝影鏡頭校正難度降低;最後,我們參考專家提供之側踢建議量化特徵,分析各特徵的重要性排序,並利用機器學習的方式,訓練運動時空特徵及專家建議特徵,來預測選手整體側踢表現分數。 實驗以均方根誤差與交叉驗證評估多種回歸模型方法,最終選擇卷積神經網路模型,作為系統之評分模組。結果顯示實際應用之誤差為0.69,經信度檢驗,其結果也達顯著相關,在容許誤差為1的範圍內,準確率達86%。本研究提出之SideKick系統不需花費大量金錢及人力,且錄製設備取得容易。學員們能藉由本系統了解自身能力,教練們也可以在不限任何時間或地點下指導學員,提升團體訓練效益,並為未來遠程跆拳道品勢評價系統奠定基礎。
  • Item
    通用於第一人稱射擊遊戲外掛檢測機制之研究
    (2022) 陳逸文; Chen, Yi-Wen
    隨著科技的飛速發展,玩家可以在一台個人電腦上遊玩各種類型的遊戲,在各類型遊戲中,網路遊戲是大多數玩家最喜愛的遊戲類型,玩家為了在網路遊戲中獲得更好的成就,開始使用外掛程式達成個人無法實現的目標,基於上訴原因,作弊偵測成為了遊戲廠商的重大課題。本研究提出了一種基於影像辨識並以數據檢測輔助的作弊檢測系統,並分別使用VGG16、ResNet50、MobileNet V2、Xception和Inception v3 對誠實玩家和作弊玩家的瞄準軌跡進行檢測,研究結果表明,Inception V3 能最準確的分辨誠實玩家與作弊玩家。
  • Item
    以智慧椅墊進行坐姿分析之研究
    (2019) 張雅婷; Chang, Ya-Ting
    在現代社會中,大部分人的生活型態,不論是工作或者休息,往往有很長的時間維 持坐姿。近年來有越來越多的疾病被證實與久坐有關。許多人認為坐姿是種休息的姿 勢,但研究中指出,比起站姿與躺姿,坐姿讓椎間盤承受的壓力更大,而不適當的坐 姿則更提升了椎間盤的壓力。 由於久坐逐漸成為現代人的生活習慣,所以適當的坐姿就顯得格外的重要。在日常 生活中,不適當的坐姿對於大多數的人而言,屬於較為舒適的姿勢,所以往往無心注 意自己的坐姿是否適當。故須透過工具協助來了解自己的坐姿情況。本研究設計一智 慧椅墊之雛形,旨在透過較低的成本 Arduino開發版與少量的壓力感測器,並且準確 的分類使用者的坐姿。 過去使用壓力感測器進行坐姿分類的相關研究中,透過傳統的機器學習方法進行坐 姿的分類,且使用較多數量的感器收集各類坐姿的資料。準確率落在百分之八十至百 分之九十。本研究使用一種傳統機器學習演算法與兩種深度學習之方法進行實驗,找 出適合進行坐姿分類之方式,並以特徵選擇實驗找到能夠準確分類坐姿之感測器數量 及擺放方式。 本研究除了使用限制坐姿使用資料進行坐姿分類模型訓練以及評估初步的分類結 果,並透過實際座椅使用情況資料,再次檢視此智慧椅墊在實際使用情形下,亦能有 良好的做姿分類表現。透過智慧椅墊設計實驗與特徵選擇實驗,本研究完成一智慧椅 墊,使用少量的感測器與基礎的物聯網開發板,降低了硬體成本,達成良好的坐姿分 類表現。
  • Item
    偵測各類電影精彩片段之研究
    (2014) 蔡晏瑋
    在多媒體內容分析領域中,影片精彩片段之偵測是一個十分熱門的議題。在過去的研究當中,許多的方法針對運動類型的影片做精彩片段之偵測。對於十分龐大的電影資料,使用者在挑選自己想要收看的影片時會花費大量的時間。因此,如何讓使用者更有效率地去挑選一部想要收看的影片,變成了一個有趣的議題。在本論文中,我們提出了一個對於各類電影精采片段偵測的方法。藉由偵測出精彩片段,做為使用者挑選影片的參考。我們所提出的方法建立在結構化輸出之機器學習模型Structured Output SVM(SOSVM)上以及影像中的特徵分析。其中特徵部分,分為視覺及聽覺兩種。視覺特徵使用的為中階特徵,為鏡頭切換頻率以及鏡頭標籤。聽覺特徵則是基本的音量大小以及聲音頻率。而結構化輸出的機器學習方法有別於傳統SVM的輸出侷限於一個數字或一個標籤,其輸出可以是一個複雜的結構物件。因此在預測精彩片段的學習上,結構化輸出的機器學習方法使我們能夠更直接解決問題。在實驗中,我們使用動作片類型電影以及喜劇片類型電影作為資料庫。整體系統對於兩種不同類型的電影的精彩片段預測皆呈現出不錯的準確率。
  • Item
    使用結構性輸出之機器學習方法於電影精彩度預測
    (2013) 許浩禎; Hsu Hao Chen
    在多媒體內容分析領域的近期研究中,針對時間事件的偵測成為了廣泛探討的議題。一個可靠的時間事件偵測技術存在著許多的應用,例如個人視角的生活觀察及預測大範圍災害持續時間等。從這些應用中,我們可以發現早期事件偵測(Early event detection)也漸漸受到重視。對於人們在觀賞電影時,可以很自然地了解到接下來的劇情將要進入精彩,如果可以讓機器也能如人類感知般,了解到電影的精采度變化,將是一件有趣的工作。在本論文中,我們提出一個藉由機器學習模型 結構性輸出支持向量器 (Structured Output SVM) 的方法實現電影上的精采度偵測器,有別於傳統 SVM的輸出侷限於一個數字或一個標籤,Structured Output SVM的輸出格式可以是一個複雜的結構物件,例如是一張圖片、一個框架或是一段時間區間等等。在預測精彩片段的學習上,Structured Output SVM提供了更有彈性的輸出,使我們能夠更直接的解決問題。在本篇論文中,我們利用電影動作片進行實驗,並透過此模型所計算的信心度自動的辨識出精彩場景。
  • Item
    生醫文獻中特定關係組合之自動化擷取
    (2018) 陳弘奇; Chen, Hung-Chi
    本研究目的為擷取自然語句中指定名詞間的關係判定,並應用在生醫文獻內,以便快速地找出文獻中有用途的關係。雖然本研究是透過生醫文獻為基礎,但是對於各個領域的研究人員在探討自己領域的相關文獻資料時,也可以透過此方法更快速且正確的篩選到自己需要的文獻及資料。 本研究所使用的資料集分成兩組,並在實驗上兩組資料個別獨立。一組為參考Clinical trials (https://clinicaltrials.gov)網站中提供美國官方已完成的疾病研究和藥物的配對為基礎,並透過PubMed資料庫(https://www.ncbi.nlm.nih.gov/pubmed)搜尋目標疾病藥物對的生醫文獻摘要。其資料分成兩類:從PubMed文章摘要找出含有Clinical trials所提及到的疾病可被藥物治療之句子,視為正向的句子;以及相同疾病不能被藥物治療或是疾病與藥物無任何關聯之句子,視為負向的句子。 另一組為SemEval 2013 Task 9所提供,內容為MedLine的摘要以及DrugBank的資料庫構成的語料庫,SemEval 2013 Task 9為從生醫文獻中擷取藥物間交互作用的競賽(SemEval 2013 Task 9:Extraction of Drug-Drug Interactions from Biomedical Texts),該競賽將藥物間的交互作用分成五類:Advice(建議)、Effect(影響)、Mechanism(機制)、Int(交互作用)和False(無交互作用)。 本研究為透過多層次的機器學習方法搭配基本字詞轉換與自然語言句子分析作為特徵擷取。本研究在藥物—疾病關係辨識實驗最佳結果Accuracy為75.7%、Precision為76.3%、Recall為74.6%以及F-score為75.5%;在藥物—藥物關係辨識實驗最佳結果Precision為47.8%、Recall為72.4%以及F-score為57.6%。
  • Item
    以混合式方法自生醫文獻擷取藥物-藥物交互作用之研究
    (2017) 陳佩瑄; Chen, Pei-Hsuan
    一種疾病往往伴隨著許多不同的症狀,而一種症狀通常使用一種藥物治療,例如:感冒時,會有咳嗽、鼻塞或頭痛等症狀,所以就需要多種藥物來治癒該疾病。在服藥期間,若藥物與藥物之間產生不理想之狀況,像是藥效過強或互相抵抗,導致療效失敗,嚴重甚至導致死亡,就是所謂的藥物-藥物交互作用(Drug-Drug Interaction, DDI)。目前許多的藥物-藥物交互作用仍隱藏在大量的生醫文獻中,等著被研究人員挖掘,若利用自然語言處理(Natural Language Processing, NLP)的擷取和分析等技術,將能大量挖掘隱藏的藥物-藥物交互作用以及減少研究人員的挖掘時間。 論文中所使用的資料來源是由SemEval 2013 Task 9所提供的語料庫,內容包括MedLine的摘要和DrugBank的資料庫,SemEval 2013 Task 9的競賽內容為自生醫文獻中擷取藥物-藥物交互作用(SemEval 2013 Task9:Extraction of Drug-Drug Interactions from Biomedical Texts),將藥物-藥物交互作用分成五類:Advice(建議)、Effect(影響)、Mechanism(機制)、Int(交互作用)和無交互作用,評估的方式為計算辨識和分類的precision、recall和F1-measure。 本研究利用混合式方法進行辨識和分類,其中混合式方法為機器學習方法和以規則為基方法,由於語料庫內部五個類別的數量呈現不平衡的狀態,因此,運用兩階段的方式先辨識藥物對是否有交互作用存在,辨識所獲得的F1-measure為70.8%,接著再將辨識出有交互作用的藥物對做分類,分類所獲得的F1-measure為62.5%,其中FBK-irst隊伍獲得最好的效能,辨識和分類的F1-measure分別為80.0%和65.1%,參賽隊伍之平均辨識和分類的F1-measure分別為68.1%和51.8%,雖然辨識和分類無法比FBK-irst隊伍所獲得的F1-measure還高,但所獲得的F1-measure高於平均許多。在未來可將機器學習方法和以規則為基方法運用於其他領域的資訊擷取研究上。
  • Item
    以BNN與AlexNet為基礎適用於CIFAR10圖形辨識之積體電路架構設計
    (2017) 王愷薇; Wang, Kai-Wei
    本論文以FPGA實作AlexNet摺積類神經網路模型之硬體電路架構,並以CIFAR10全彩圖像資料庫作為圖像辨識數據,設計適用於該資料庫的圖形辨識電路架構,傳統的摺積類神經網路以浮點數形式存取運算所用到的相關參數,同時運算方式較為複雜,這種模式不僅會增加記憶體的存取資源消耗,也會造成運算的負擔。本論文將二元化類神經網路技術結合至電路設計中,其最主要的核心概念是將權重及運算結果透過二元化相關演算法簡化為二進制表示法,並使用XNOR做位元運算,此作法不僅能降低FPGA資源消耗,同時也能提升運算效率。 本論文選用AlexNet作為設計電路之模型,AlexNet對於全彩圖像的辨識結果優於LeNet5,而AlexNet相較於其他結構複雜的摺積類神經網路模型更適合實作於硬體電路,雖然AlexNet所使用的參數較多,以原始32bit 浮點數存取權重確實在硬體上難以實現,但利用二元化類神經網路便可將權重簡化至1bit二進位碼,而運算子則不需要使用到浮點數的加法器與乘法器,這不單是降低內建記憶體及暫存器資源使用,更提升存取記憶體的效能。 依據實驗結果,本論文所提出之硬體架構相較於近期相關研究有低面積資源消耗之優點,且辨識精確度不亞於其他研究架構,對於現今人工智慧晶片發展領域,本論文所提出之硬體架構著實具有競爭價值。