研究發展處
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/167
Browse
2 results
Search Results
Item 教改爭議聲中,證明所為何事?(國立臺灣師範大學研究發展處, 2004-04-??) 洪萬生從1980(年)開始,解題、溝通與連結等數學能力,一直是數學教育努力的目標。而支撐這些能有的基本因子,就是數學論證能力。在本文第二節中,作者,如何『貼近』一些古代文本,以免陷入邏輯謬誤而不曾察覺。譬如說吧,美國加州公立學校學學架構中的幾何命題之邏輯順序安排,在歐幾里得《幾何原本》的脈終下,就犯了循環謬誤。然後,在第三節中,作者進一步論述『視覺直觀』與『演繹論證』之間的折衷可能性,至於具體策略則可仿Freudenthal/Hanna & Jahnke所主張,設法從圍繞幾何學中那些根本且有啟發性的應用面向,研擬出幾個『小理論』來。而在這些『小理論』的『局部組織』內,邏輯的嚴密性當然可以得到適當的照顧。再者,作者將在HPM的脈絡下,從貼近一些歷史經驗來尋找處理『證明』的出路,譬如在本文第四節中,我們所引述的Chairaut改編《幾何原本》時所注入的『發明的順序』之進路,乃至於劉徽的圓面積公式之『證明』等等,都說明了歷史經驗之可貴。因此,由本文論述來看,『證明』在數學教育過程中,不僅在於它的邏輯或論證『說明』,更重要的,應該是它對數學知識的『說明』功能,原本是數學教育工作者不應輕忽視之教育目標,在教改爭議聲中尤其更應有所堅持才是。Item 從程序性知識看《算數書》(國立臺灣師範大學研究發展處, 2005-04-??) 洪萬生; Wann-Sheng Homg在本文中,我打算運用『程序性知識』的面向來考察《算數書》的內容。過去數學史家曾運用『算則』,來刻畫中國古代數學的特色。現在,『程序性知識』則出自數學教育,我們因而可以援引數學教育的研究成果,來豐富我們對於中國古代數學特徵的理解。其實,『數學史研究』與『數學研究』固然可能彼此互惠,同理,『數學史』與『數學教育』當然也可以互相發明。基於此,我將根據數學教育專家的論述,舉例說明程序性知識 vs. 概念性知識,以及此一『對比』如何關聯到數學論證上。然後,我們針對《算數書》中的幾個問題及其解法,來檢視它們如何與程序性知識相關連。特別地,我也將試著運用Eddie Gray & David Tall所謂的『程序成概念』,以說明某些『術曰』所呈現的知識類型。最後,我們再從此一角度,考察這些『術曰』中涉及的數學論證之類型。