AI 跨域應用研究所

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/124121

該研究所主要研發方向在人工智慧、物聯網科技、智慧製造技術等,與企業合作技術開發及研究四大主題,包含「智慧顯示科技開發與應用」、「元宇宙3D顯示器」、「影像顯示器智慧製造與自動生產校正」及「智慧資安技術發展」,共同培育產業實務需要的人才。另可透過產學合作機制與企業聯手開發人工智慧相關創新應用服務,加速孵育AIoT整體解決方案進軍國際市場,符應行政院110年核定「六大核心戰略產業推動方案」有關「資訊及數位」之內涵,符合國家重點領域「人工智慧、智慧製造」之設立精神。 此研究所目標為深化研究、產業技術升級、整合不同專業領域資源、以及開發科技新的契機。此研究所教學研究領域包含:深度學習、人工智慧系統平臺、影像處理與分析、電腦視覺、自然語言處理、智慧顯示科技、智慧物聯網科技、智慧製造技術、智慧機器人等。課程特色注重產業鏈結,聘請國內外研究單位與企業之人工智慧應用領域專家參與授課,落實學用合一,解決學用落差。並與企業合作擬定技術開發議題,共同指導研究生進行前瞻技術開發計畫,培養具備人工智慧跨域應用所需的專業知識與實作技術的人才,解決產業實務議題。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    針對心電圖資料不平衡之分類模型設計
    (2025) 李政軒; Li, Zheng-Xuan
    本研究旨在探討運用深度學習技術於心電圖(ECG)訊號分類的應用潛力,以協助提升心律異常的辨識能力與早期診斷準確性。研究中提出一種基於一維殘差網路(1D ResNet-18)之模型架構,並整合卷積區塊注意力模組(CBAM)與輔助分類器(Auxiliary Classifier),以強化模型對 ECG 特徵的表達與判別能力。此架構源自電腦視覺任務,經調整後應用於一維生理訊號的分類工作,展現良好的適應性。資料處理方面採用 ADASYN 技術處理類別不平衡問題,並輔以資料增強策略以提升模型穩定性與泛化能力。模型於 MIT-BIH 公開資料集中進行驗證,結果顯示其分類表現優於傳統方法,特別是在多類別訊號辨識上具備一定的穩定性與準確性。綜合研究結果,顯示本模型結合注意力機制、輔助分類設計與資料處理策略後,能有效強化 ECG 訊號分類模型之應用能力,未來有望作為智慧健康照護輔助診斷系統的技術參考。