科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    改良式對角化主要成份分析法應用於腦電波辨識
    (2007-06-01) 陳致仰; 葉榮木; 蔡俊明
    本篇文章提出一個有效的方法,對受測者在意圖吐舌頭與意圖舉起左手時的腦電波做辨識。腦電波辨識是否成功的關鍵,在於特徵擷取與分類兩個議題,有別於過去文獻將重點放在分類演算法的改良上,我們認為找出更具代表性和更精簡的特徵,同樣值得重視。若選取的特徵能夠讓類別之間的差異變大,我們就可以使用很簡單的方法,來取代原先複雜的分類演算法,也不會降低辨識的準確率。在此,我們採用在人臉影像辨識中,具有良好效果的對角化主成份分析法(DiaPCA),來擷取腦電波特徵,並加以辨識。我們除了找出 DiaPCA 在腦電波辨識的應用中最佳的參數條件之外,並提出了「改良式對角化主成份分析法」,來提升其辨識率。研究結果顯示,我們所做的修改,將原始的 DiaPCA應用在腦電波辨識的準確率大幅提升了10.79%。
  • Item
    用線性鑑別分析法分類冥想四個方向之腦機介面研究
    (2007-06-01) 蔡俊明; 葉榮木; 沈世評; 許育財
    許多神經疾病,例如脊髓損傷、腦幹中風、肌萎縮性脊髓側索硬化症(amyotrophic lateral sclerosis, ALS)等等,這些疾病影響到個體的工作能力。大腦人機介面(brain-computer interface, BCI)是一種利用腦部訊號與外界溝通的新技術,其目的是幫助因神經肌肉損傷而行動受阻礙的人。過去在這方面的研究中,對於內部刺激-想像,為想像左、右手和腳動,並無利用冥想四個方向做為內部刺激,有鑑於此,本研究遂以冥想四個方向實驗的腦波訊號輸入並利用快速傅立葉分析法找出重要之特徵,再應用線性鑑別分析器進行分類,發展一套可分辨冥想四個方向的腦波系統。 經由實驗結果得知,此系統利用與標準資料作方向比對,其辨識率可達 80%。未來我們計劃將此系統運用在設計生活環境的下拉式選單,以造福神經疾病患者或行動不便人士。