科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    氧化鋅奈米線應用於LED與其特性改良
    (2011) 黃秀麗
    發光二極體是一種極具潛力成為下一世代主要光源的固態照明技術。在發光二極體的發展過程中,歷來技術上之突破大幅改善其光電特性,但現階段發光效率仍不足,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,相較於傳統薄膜型發光二極體,具奈米線結構之發光二極體在相同注入電流下,會因量子侷限效應而提升其發光強度。本論文採用水熱法製備N型氧化鋅奈米線,選擇氮化鎵薄膜作為P型材料則,製作成異質接面發光二極體結構,並進行其特性之研究。另一方面,氮化鎵發光二極體因菲涅爾損失(Fresnel loss)及全反射現象而降低其光萃取效率,同樣可藉由氧化鋅奈米線之應用而有所改善,故本論文於氮化鎵垂直型發光二極體之出光面,成長氧化鋅奈米線,以提升其光萃取效率。 在P型氮化鎵薄膜/N型氧化鋅奈米線異質結構的製備上,本論文致力於元件串聯電阻的降低,以及改善漏電流現象。在降低元件串聯電阻的部份,經快速熱處理製程後,氧化鋅鋁成核層及氧化鋅鋁電流擴散層之最佳電阻率分別為7.165×10-3、2.141×10-3 Ω-cm。鋁摻雜之氧化鋅奈米線,分別使用硝酸鋁、氯化鋁及醋酸鋁做為鋁摻雜來源,由歐傑電子能譜及X光光電子能譜儀可檢測出氧化鋅奈米線有鋁的成分。在改善漏電流現象的部份,採用液態二氧化矽之溶液,旋塗在奈米線之間,並烤乾以形成薄膜,實驗結果顯示旋塗3次可以得到最佳之旋塗效果,並以RIE通CF4氣體蝕刻絕緣材料至露出奈米線表面,完成奈米線間之絕緣填充。 在N型氮化鎵出光表面製備氧化鋅成核層/氧化鋅奈米線,以改善光萃取效率的部分,本論文於未粗化與已粗化出光表面製備氧化鋅成核層/氧化鋅奈米線。實驗結果顯示,在未粗化之N型氮化鎵表面製備氧化鋅成核層/氧化鋅奈米線,可提升氮化鎵發光二極體之光輸出功率,當氧化鋅成核層之厚度為100 nm,水熱法溶液之濃度為35 mM,在350 mA之注入電流下,氮化鎵發光二極體之光輸出功率可提升151.47 %,為最佳結果。將氧化鋅成核層/氧化鋅奈米線製備於已粗化之N型氮化鎵表面,則會略微降低其光輸出功率。此外,製備氧化鋅成核層/氧化鋅奈米線於氮化鎵發光二極體之出光表面,可改善其二極體特性,IR良率亦略微提升,顯示成長氧化鋅奈米線可以減少漏電流現象。