科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    A GA-based indirect adaptive fuzzy-neural controller for uncertain nonlinear systems
    (2002-12-06) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. Li
    In this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the RGA. Moreover, we propose an application of the RGA in designing an RGA-based indirect adaptive fuzzy-neural controller (RIAFC) for uncertain nonlinear dynamical systems. The free parameters of the indirect adaptive fuzzy-neural controller can successfully be tuned on-line via the RGA approach. A supervisory controller is incorporated into the RIAFC to stabilize the closed-loop nonlinear system. An example of a nonlinear system controlled by RIAFC are demonstrated to show the effectiveness of the proposed method.
  • Item
    Sliding Control for Linear Uncertain Systems
    (2003-09-19) C.-W. Tao; M.-L. Chan; W.-Y. Wang
    A new design approach to enhance a terminal sliding mode controller for linear systems with mismatched time-varying uncertainties is presented in this paper. The nonlinear sliding surface is used to have the system states arrive at the equilibrium point in the finite time period. The sliding coefficient matching condition is extended for the terminal sliding mode control. The uncertain system with the proposed terminal sliding mode controller is shown to be invariant on the sliding surface. The reaching mode of the sliding surface is guaranteed and the close-loop system is stable. Moreover, the undesired chattering is alleviated with the designed terminal sliding mode controller. Simulation results are included to illustrate the effectiveness of the presented terminal sliding mode controller.
  • Item
    Robust control of the mismatched systems with the fuzzy integral sliding controller
    (2003-10-08) C.-W. Tao; M.-L. Chan; W.-Y. Wang
    An adaptive fuzzy integral sliding mode controller for mismatched time-varying linear systems is presented in this paper. The proposed fuzzy integral sliding mode controller is designed to have zero steady state system error under step inputs and alleviate the undesired chattering around the sliding surface. The parameters in the fuzzy mechanism are adapted on-line to improve the performance of the fuzzy integral sliding mode control system. Thus, the bounds of the uncertainties are not required to be known in advance. The designed fuzzy integral sliding mode control system is shown to be invariant on the sliding surface. Moreover, the reaching mode of the sliding surface is guaranteed and the close-loop system is stable. Simulation results are included to illustrate the effectiveness of the presented fuzzy integral sliding mode controller.
  • Item
    Fuzzy-neural function approximation using a vector evaluation genetic algorithm
    (2003-01-01) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. Li
  • Item
    Stable anti-lock braking system using output-feedback direct adaptive fuzzy neural control
    (2003-10-08) W.-Y. Wang; G.-M. Chen; C.-W. Tao
    In this paper, an output feedback direct adaptive fuzzy neural controller for an anti-lock braking system (ABS) is developed. It is assumed that only the system output and the wheel slip ratio, is available for measurement. The main control strategy is to force the wheel slip ratio tracking variant optimal slip ratios, which may vary with the environment and assumed to be known during the vehicle-stopping period. By using the strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be verified. To demonstrate the effectiveness of the proposed method, simulation results are illustrated.
  • Item
    Design of sliding mode controllers for bilinear systems with time varying uncertainties
    (IEEE Systems, Man, and Cybernetics Society, 2004-02-01) C.-W. Tao; W.-Y. Wang; M.-L. Chan
    Sliding mode controllers for the bilinear systems with time varying uncertainties are developed in this paper. The bilinear coefficient matching condition which is similar to the traditional matching condition for linear system is defined for the homogeneous bilinear systems. It can be seen that the bilinear coefficient matching condition is very limited and is not generally applicable to the nonhomogeneous bilinear system. Thus, the sliding coefficient matching condition is also considered for the bilinear systems with time varying uncertainties. Then, the sufficient conditions are provided for the reaching mode of the time varying uncertain bilinear systems to be guaranteed by the designed sliding mode controllers. Moreover, the stability of the uncertain bilinear systems with the sliding mode controller is discussed. Simulation results are included to illustrate the effectiveness of the proposed sliding mode controllers.
  • Item
    Adaptive bound reduced-form genetic algorithms for B-spline neural network training
    (IEICE, 2004-11-01) W.-Y. Wang; C.-W. Tao; C.-G. Chang
    In this paper, an adaptive bound reduced-form genetic algorithm (ABRGA) to tune the control points of B-spline neural networks is proposed. It is developed not only to search for the optimal control points but also to adaptively tune the bounds of the control points of the B-spline neural networks by enlarging the search space of the control points. To improve the searching speed of the reduced-form genetic algorithm (RGA), the ABRGA is derived, in which better bounds of control points of B-spline neural networks are determined and paralleled with the optimal control points searched. It is shown that better efficiency is obtained if the bounds of control points are adjusted properly for the RGA-based B-spline neural networks.
  • Item
    Observer-Based Direct Adaptive Fuzzy-Neural Control for Anti-lock Braking Systems
    (中華民國模糊學會, 2006-12-01) G.-M. Chen; W.-Y. Wang; T.-T. Lee; C.-W. Tao
    In this paper, an observer-based direct adaptive fuzzy-neural controller (ODAFNC) for an anti-lock braking system (ABS) is developed under the constraint that only the system output, i.e., the wheel slip ratio, is measurable. The main control strategy is to force the wheel slip ratio to well track the optimal value, which may vary with the environment. The observer-based output feedback control law and update law for on-line tuning of the weighting factors of the direct adaptive fuzzy-neural controller are derived. By using the strictly-positive-real (SPR) Lyapunov theory, the stability of the closed-loop system can be guaranteed. Simulation results demonstrate the effectiveness of the proposed control scheme forABS control.