科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    The Low-Cost RF-CMOS 60-GHzTransceiver
    (2007-03-01) Tian-Wei Huang; Chi-Hsueh Wang; Hong-Yeh Chang; Pei-Si Wu; Kun-You Lin; Jeng-Han Tsai,Chin-Shen Lin; Huei Wang; Chun Hsiung Chen
  • Item
    MMICs in the millimeter-wave regime
    (IEEE Microwave Theory and Techniques Society, 2009-02-01) Huei Wang; Kun-You Lin; Zuo-Min Tsai; Liang-Hung Lu; Hsin-Chia Lu; Chi-Hsueh Wang; Jeng-Han Tsai; Tian-Wei Huang; Yi-Cheng Lin
    On the basis of the current status of silicon based MMICs, it is possible to implement millimeter-wave SOC in silicon-based technologies that include the antenna, a medium-power amplifier, a transceiver, an LO (frequency synthesizer), and baseband circuits in a single chip. With certain interconnection schemes, such as flip-chip, to connect the chip to the substrate, it is also possible to integrate the best possible chips for a millimeter-wave communication system. Currently, CMOS is the best choice for the baseband circuits, while GaAs and InP MMICs can provide the best noise/power performance in the transceiver. High-efficiency antennas can be implemented directly on the packaging substrate. The SIP approach has the optimal combinations of the components for the best performance in a particular system. For example, a system in a package including CMOS baseband circuits, GaAs/InP-based transceiver, high-efficiency antenna, and high-power amplifier can achieve the best system characteristics. As we have discussed, the scope of SOC can be expanded along with more advanced MMIC fabrication technology and design techniques.
  • Item
    Design and analysis of a 0.8-77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology
    (IEEE Microwave Theory and Techniques Society, 2009-03-01) Hong-Yuan Yang; Jeng-Han Tsai; Chi-Hsueh Wang; Chin-Shen Lin; Wei-Heng Lin; Kun-You Lin; Tian-Wei Huang; Huei Wang
    A compact and broadband 0.8-77.5-GHz passive distributed drain mixer using standard 0.13-mum CMOS technology is presented in this paper. To extend the operation bandwidth, a uniform distributed topology is utilized for wideband matching. This paper also analyzes the device size and number of stages for the bandwidth of the CMOS distributed drain mixer. To optimize the conversion gain performance of the CMOS drain mixer, a gate bias optimization method is proposed and successfully implemented in the mixer design. This mixer consumes zero dc power and exhibits a measured conversion loss of 5.5 plusmn1 dB from 0.8 to 77.5 GHz with a compact size of 0.67 0.58 mm2 . The output 1-dB compression point is -8.5 dBm at 20 GHz. To best of our knowledge, this monolithic microwave integrated circuit has the widest operation bandwidth among CMOS wideband mixers to date with good conversion efficiency and zero dc power consumption.