科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Fabrication of nanoporous antireflection surfaces on silicon
    (Elsevier, 2008-11-01) Huang, Mao-Jung; Yang, Chii-Rong; Chiou, Yuang-Cherng; Lee, Rong-Tsong
    After the surface of a silicon wafer has been texturized, the reflectance of the wafer surface can be reduced to increase the power generation efficiency of a silicon-based solar cell. This study presents the integration of self-assembled nanosphere lithography (SANSL) and photo-assisted electrochemical etching (PAECE) to fabricate a nanostructure array with a high aspect ratio on the surface of silicon wafer, to reduce its reflectance. The experimental results show that the etching depth of the fabricated nanopore array structure is about View the MathML source and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 68:1. The weighted mean reflectance of a blank silicon wafer is 40.2% in the wavelength range of 280–890 nm. Five-minute PAECE without SANSL reduces the weighted mean reflectance to 5.16%. Five-minute PAECE with SANSL reduces the weighted mean reflectance to 1.73%. Further coating of a 200 Å thick silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878%. The novel fabrication technology proposed in this study has the advantage of being low cost, and the fabricated nanostructure array can be employed as an antireflection structure in single crystalline silicon solar cells.
  • Item
    Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions
    (Elsevier, 2005-03-28) Yang, Chii-Rong; Chen, Po-Ying; Yang, Cheng-Hao; Chiou, Yuang-Cherng; Lee, Rong-Tsong
    Three ion-typed surfactants, including anionic SDSS, cationic ASPEG and non-ionic PEG, which are powerful wetting agents in electroforming, were added to 30 wt.% KOH and 10 wt.% TMAH solutions to evaluate the silicon anisotropic etching properties of the (1 0 0) silicon plane without agitation and no IPA additive. The results indicate that the surfactant ion-types are not the main determinants of the silicon anisotropic etching properties in KOH and TMAH solutions. The wetting capacity of the etchants causes the efficacies of the etchants on the roughness to follow the order anionic SDSS, cationic ASPEG, non-ionic PEG and pure solution in KOH solutions, and the order cationic ASPEG, non-ionic PEG, pure solution and anionic SDSS in TMAH solutions, especially at higher etching temperatures. Moreover, the chemical activities of etchants differ so that the etching rates follow the order anionic SDSS, pure solution, non-ionic PEG and cationic ASPEG in KOH solutions, and the order anionic SDSS, pure solution, cationic ASPEG and non-ionic PEG in TMAH solutions at a given etching temperature. Anionic SDSS has the highest etching rate of 5.4 μm/min and the lowest surface roughness of 7.5 nm, which are about 1.69 times higher and 7.87 times lower, respectively, than those obtained in pure KOH solution. The cationic ASPEG has a reasonable etching rate of 0.7 μm/min and the lowest surface roughness of 4 nm in TMAH solutions for etching temperature of 100 °C. Furthermore, the surfactants used here were demonstrated to allow the utilization of usual mask materials and anionic SDSS can even increase the selectivity of silicon dissolution toward silicon dioxide in KOH solutions. A drastic reduction of the undercutting of the convex corners is obtained in TMAH solutions with non-ionic PEG surfactant. This finding reveals that the addition of non-ionic PEG to TMAH solutions is ideal when accurate profiles are required without extremely deep etching.
  • Item
    Realization of silicon nanostructure arrays using photo-assisted electrochemical etching
    (Elsevier, 2008-01-01) Huang, Mao-Jung; Chii-Rong; Lee, Rong-Tsong; Chiou, Yuang-Cherng
  • Item
    Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution
    (Elsevier, 2005-03-28) Yang, Chii-Rong; Chen, Po-Ying; Chiou, Yuang-Cherng; Lee, Rong-Tsong
    Agitation is a key method that significantly affects silicon wet anisotropic etching quality including the etching rate and surface roughness. This study introduced the ultrasonic agitation to improve the roughness quality of etched (1 0 0) silicon plane in 30 wt.% KOH solution. These etching characteristics have been compared with those using magnetic stirring and no agitation. In ultrasonic agitation condition, the etching rate increases linearly with agitating power, but the surface roughness worsens. Although the etching rate always exceeds 1.2 μm/min and the average roughness, Ra is below 15 nm, the membrane microstructures are damaged easily by ultrasonic agitation. Moreover, the KOH solution with added anionic surfactant, dihexyl ester of sodium sulfosuccinic acid, is also used to evaluate the etching properties of (1 0 0) silicon under without agitation. Owing to increasing hydrophilic ability between the hydrogen bubble and silicon surface and the effect of silicon wettability, the etching properties are promoted drastically. Experimental results show that the average roughness, Ra can be reduced to 7.5 nm in aqueous KOH with anionic surfactant, which is about eight times better than achieved by the pure KOH solution without agitation for etching temperature of 100 °C. Meanwhile, the etching rate can be enhanced to 4.9 μm/min, which is 1.44 times better than that is obtainable in a pure KOH solution with ultrasonic agitation. The etching rate of the KOH solution with added surfactant is about twice that in the KOH solution with isopropyl alcohol (IPA) for etching temperature of 80 °C. Furthermore, this study also illustrates the reflectivity of etched surface for visible wavelength and the fabrication of thin film microstructures.