科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    基於長短期記憶網路的疲勞檢測
    (2022) 高國瑋; Gao, Guo-Wei
    本論文重點介紹即時疲勞檢測流程。該系統將在 Python 內部完成這一切,並逐步構建它,以便能夠檢測到不同的姿勢,特別是困倦的跡象。 為了做到這一點,我們使用一些關鍵模型並使用 MediaPipe Holistic 來提取關鍵點。 這將使我們能夠從臉部提取關鍵點。 該系統使用 Tensorflow 和 Keras,並建立了一個長短期記憶模型 long short-term memory(LSTM),能夠預測螢幕上顯示的動作。我們需要做的是收集關於我們所有不同關鍵點的一些數據,所以我們收集我們臉上的數據並將它們保存為 Numpy 數據,以便處理多維的陣列或矩陣。人臉檢測方法基於一個深度神經網絡,使用 Sklearn 進行評估和測試,並使用 Matplotlib 幫助進行圖像可視化。能夠從臉部檢測到 468個地標,提取臉部的重要特徵並對數據進行變換,以便將數據導入 LSTM 模型。使用 LSTM 層繼續並預測時間分量,它能夠從多個幀預測動作,而不僅僅是單個幀。使用 Opencv 進行集成,然後使用網路攝影機進行即時預測。本研究成功使用 MediaPipe 與 LSTM 模型相結合,提出一套疲勞檢測的系統。實驗結果顯示,經機器學習後其檢測平均準確率能達到 90%。