科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    A compact 35-65 GHz up-conversion mixer with integrated broadband transformers in 0.18-μm SiGe BiCMOS technology
    (2006-06-01) Ping-Chen Huang; Ren-Chieh Liu; Jeng-Han Tsai; Hong-Yeh Chang; Huei Wang; John Yeh,Chwan-Ying Lee; John Chern
    This paper presents a compact 35-65 GHz Gilbert cell up-convert mixer implemented in TSMC 0.18- ȝm SiGe BiCMOS technology. Integrated broadband transformers and meandered thin-film microstrip lines were utilized to achieve a miniature chip area of 0.6 mm × 0.45 mm. The compact MMIC has a flat measured conversion loss of 7 ± 1.5 dB and LO suppression of more than 40 dB at the RF port from 35 to 65 GHz. The power consumption is 14 mW from a 4-V supply. This is a fully integrated millimeterwave active mixer that has the smallest chip area ever reported, and also the highest operation frequency among up-conversion mixers using silicon-based technology.
  • Item
    Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers
    (IEEE Microwave Theory and Techniques Society, 2006-06-01) Jeng-Han Tsai; Hong-Yeh Chang; Pei-Si Wu; Yi-Lin. Lee; Tian-Wei Huang; Huei Wang
    A 44-GHz monolithic microwave integrated circuit (MMIC) low-loss built-in linearizer using a shunt cold-mode high-electron mobility transistor (HEMT), based on the predistortion techniques, is presented in this paper. The proposed cold-mode HEMT linearizer can enhance the linearity of the power amplifier (PA) with a low insertion loss (IL<2 dB), a compact die-size, and no additional dc power consumption. These advantages make the linearizer more suitable for millimeter-wave (MMW) applications. The physical mechanism of the gain expansion characteristics of the proposed linearizer is analyzed. A systematic design procedure for a low-loss linearizer is developed, which includes: 1) insertion loss minimization through a device-size selection and 2) linearity optimization through a two-tone test. To demonstrate the general usefulness of the proposed linearizer, the linearizer was applied to a two-stage 44-GHz MMIC medium PA and a commercial MMW PA module. After linearization, the output spectrum regrowth is suppressed by 7-9 dB. To keep the adjacent channel power ratio below -40 dBc, the output power has been doubled from 15 to 18 dBm at 44 GHz. The error vector magnitude of the 16-quadrature amplitude modulation signal can be reduced from 6.11% to 3.87% after linearization. To the best of our knowledge, this is the first multistage MMW PA with a low-loss built-in linearizer
  • Item
    A W-band high-power predistorted direct-conversion digital modulator for transmitter applications
    (IEEE Microwave Theory and Techniques Society, 2005-09-01) Hong-Yeh Chang; Jeng-Han Tsai; Tian-Wei Huang; Huei Wang; Yongxiang Xia; Yonghui Shu
    This letter presents a W-band high-power direct-conversion transmitter using digital predistortion techniques for digital modulation applications. The transmitter is a direct-conversion configuration that employs a reflection-type IQ modulator module and a power amplifier module. With the predistortion function in digital signal processing (DSP), this transmitter demonstrated an output channel power of greater than 19 dBm, and the adjacent channel power ratio (ACPR) was improved by 10 and 18 dB for QPSK and π/4-DQPSK modulation, respectively. To the best of our knowledge, this is the first demonstration of linearization techniques for W-band high-power digital modulation transmitters.