科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Distance and Angle Measurement of Distant Objects on an Oblique Plane Based on Pixel Number Variation of CCD Images
    (Institute of Electrical and Electronics Engineers (IEEE), 2011-05-01) Chen-Chien Hsu; Ming-Chih Lu; Yin-Yu Lu
    This paper presents an image-based system for measuring target objects on an oblique plane based on pixel number variation of charge-coupled device images for digital cameras by referencing to two arbitrarily designated points in the image frame. Based on an established relationship between the displacement of the camera movement along the photographing direction and the variation in pixel counts between the reference points in the images, photographic distance and incline angle for objects lying on an oblique plane can be calculated via the proposed method. As a real-case application of the proposed approach, 2-D localization of target objects in robot soccer competitions is also demonstrated to show the effectiveness of the proposed approach. To allow the use of widely available digital zoom cameras for ranging and localization by the proposed method, a parameter equivalent to the displacement due to the camera movement is also investigated and derived in this paper.
  • Item
    Image-Based System for Measuring Objects on an Oblique Plane and It Applications in Two-Dimensional Localization
    (IEEE Sensors Council, 2012-06-01) Ming-Chih Lu; Chen-Chien Hsu; Yin-Yu Lu
    This paper presents an image-based framework for measuring target objects on an oblique plane by using a single charge-coupled device camera and two laser projectors mounted in parallel beside the camera. Because of the alignment of the laser beams, which form in parallel with the optical axis of the camera, laser-projected spots in the image can be processed to establish relationships between distance and pixel counts of the projected spots in the image. Based on simple geometrical derivations without complex image processing, the proposed approach can successfully measure the photographic distance, the distance between two arbitrary points on the oblique surface, and the incline angle of the oblique surface. Thanks to its ranging capability, the proposed image-based measuring system is further applied to localize objects on a ground surface in addition to depth measurement. To demonstrate the feasibility of the proposed approach for practical applications, we propose a surveillance framework under which a pan-tilt-zoom camera tracks objects in an environment according to the 2-D localization results obtained via the proposed method. Experimental results have demonstrated the effectiveness of the proposed approach in distance measurement, as well as localization of objects on an oblique plane.