科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    運用錄影面試動態表情結合深度學習預測臺灣國際產業移工之留任意願:以卷積神經網絡為工具
    (2024) 李珮綺; LI, Pei-Chi
    臺灣於2018年3月進入高齡社會階段,65歲以上的老年人口超過全人口的14%,勞力短缺問題逐漸加劇,國際移工成為支撐臺灣勞動力的不可或缺的一環。然而,國際移工在抵達臺灣後常常面臨失聯或怠惰等問題,且這些問題隨著時間的推移變得更加嚴重。臺灣對於移工失聯的法律約束不夠完善且程序繁瑣。因此,人力顧問公司希望在面試階段能夠篩選出願意留任的國際移工,以確保雇主能夠維持穩定的留任率。在心理學領域,隨著電腦視覺(Computer Vision)與深度學習(Deep Learning)技術的成熟發展,科技與心理領域的跨學科研究越來越多。許多學者開始合作,利用視訊錄影影片辨識當事人的動態表情,進而推測其情緒甚至未來的行為。本研究深度學習技術,即卷積神經網絡(Convolutional Neural Network, CNN),進行實證研究。研究對象為81位個案派遣公司所派遣的菲律賓和越南國籍產業移工,透過電腦視覺技術收集國際產業移工在特定情境下回答問題時所展現的面部動態表情軌跡,並利用卷積神經網絡建立動態表情與留任意願之間的模型預測他們的留任意願,為臺灣的移工雇主和派遣公司提供了一個快速而具有預測力的決策輔助工具,幫助他們在招募和甄選過程中做出明智的選擇。
  • Item
    運用微表情預測工作績效:卷積神經網絡的應用
    (2021) 李淑鈺; Li, Jessica
    企業想要挑選高績效人才, 根本之道是透過有信度與效度的甄選工具。傳統的甄選流程大多透過履歷表篩選、面談評測應徵者的職能是否符合該職缺的需求。研究發現,應徵者的過去行為(Past Behaviour)是預測未來行為(Future Behaviour)與績效(Job Performance)最有效的預測因子,但行為事例式面談需耗費人力且缺乏效率。在心理學的領域發現,一個人在特定情境中的微表情除了反應當事人的情緒狀態外,也能用來預測當事人的未來行為傾向,從下一秒到下一年都有可能。隨著電腦視覺(Computer Vision)以及深度學習(Deep Learning)技術的發展,心理學家開始與電腦科技領域的專家合作,透過視訊記錄辨識當事人的微表情並用來推測當事人的未來行為。其中尤以卷積神經網絡(Convolutional Neural Network, CNN),是目前最廣泛被應用在微表情分析的深度學習技術。本研究採用實證研究法,研究對象為個案公司中101位企業內部具業務工作性質員工。結果顯示,可以運用電腦視覺處理技術蒐集業務工作性質員工在特定環境中(模擬求職面試)回答特定問題所表現出來的面部微表情運動軌跡,以卷積神經網絡建立微表情與工作績效模型,具有91 %的機率可以推測其在工作績效的考核結果,提供企業選才時另一項快速且有效的甄選決策輔助工具。