科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 10 of 11
  • Item
    全向移動平台結合機械手臂動態物件追蹤
    (2024) 邱軒博; Chiu, Hsuan-Po
    全向移動平台(Omnidirectional Mobile Platform)是一種具有全方向移動能力的移動平台,比起傳統的四輪平台更加靈活且複雜。本文自行設計此移動平台並結合機械手臂與影像辨識系統,並整合軟、硬體功能,最後使其能夠模擬一些簡單的人體動作。在機械手臂方面,描述了手臂的運動模型,取得末端的位置座標;在影像辨識上,利用雙目測距取得球體的世界座標;再將機械手臂與雙目估計的座標整合,最後透過拋物線運動方程式以及類神經網路預測其落點。最後通過實驗結果證明所提出的方法可以整合不同的座標系,且可以追蹤球體的座標,及時回傳並移動到預測落點的位置,再控制機械手臂到實際球體落下位置完成接球動作。
  • Item
    應用自適應性類神經網路控制器於六軸機械手臂
    (2022) 吳孟謙; Wu, Meng-Chien
    本論文提出了一種基於神經網絡框架學習機制的六軸機械臂控制器設計。首先,我們從六軸機械臂的實際構造中得到訓練數據集。其次,神經網絡的訓練方法是基於自適應調整輸入層和隱藏層之間的權重值和誤差。第三,將訓練數據集作為神經網絡的輸入來訓練模型。最後,我們利用李雅普諾夫理論保證了六軸機械臂控制器設計的穩定性,並與PI控制器設計進行了比較。實現了六軸機械手臂動力學模型推導,以解決運動不穩定性問題。機械臂運動過程中時變不確定擾動引起的現象。詳細動力學模型是藉由Lagrange方程式所推導出來的,計算出六軸機械手臂動力學模型。透過動力學模型,進一步進行模擬驗證。控制器是以PD為基礎進行設計的,結合自適應徑向基函數神經網絡 (RBFNN),經由隱藏層與輸出層之間的自適應調整,最終取得所需的輸出結果,再藉由Lyapunov 函數進行穩定性分析,證明整個系統的穩定性,最後實驗分析此控制器對六軸機械手臂的控制穩定性。
  • Item
    使用機器人視覺及安全軌跡規劃於自動化汽車車門噴塗系統之研究
    (2023) 柯宏瑨; Ko, Hung-Chin
    自工業4.0興起後,機器手臂導入自動化的發展成為智慧製造中不可或缺的一部分,在許多生產或加工的工廠中可以見到機器手臂的應用,由於其具備快速及穩定的優點,使得製造過程得以在更短的時間內得到更好的成果,並大幅減少了人力及時間成本。本論文透過六軸協作型機器手臂整合RGB攝影機與二維光達執行汽車車門自動化噴漆的任務,首先機器手臂根據使用者設定的四個位置拍攝車門的影像,並將其儲存,透過影像拼接技術的幫助,將四張影像根據車門的特徵拼接,藉此得到完整的欲噴塗車門之影像。獲得完整的汽車車門影像後,使用色彩偵測方法將欲噴塗車門之範圍從原始影像中過濾出來,再利用輪廓檢測技術擷取出欲噴塗範圍之內輪廓。軌跡規劃演算法根據內輪廓的大小規劃出若干條車門噴漆之路徑,經過座標轉換將此路徑轉換為機器手臂的末端點座標,使得機器手臂得以根據的軌跡進行噴漆任務。在機器手臂進行噴漆的過程中,由於人類操作員有時需要查看汽車車門是否發生上漆不均勻的情況,為了避免機器手臂在噴塗的過程中發生人機碰撞的情形,透過二維光達監控是否有操作人員進入機器手臂工作範圍的情況,透過安全機制的協助得以避免人機碰撞的問題產生。
  • Item
    自製具手臂四輪移動平台之最佳路徑規劃與抓取
    (2022) 王偉權; Wang, Wei-Chuan
    本文自行設計具手臂的四輪移動平台,其中四輪移動平台的機械手臂擁有兩個自由度,可以垂直伸縮也可以水平伸縮,具有抓取物品功能。四輪移動平台本身可驅動前進、後退、左轉、右轉,因此四輪移動平台可以自由的移動,並且利用最佳路徑規劃到達指定地點。具手臂四輪移動平台,控制的核心是使用32位元的微控制器,將控制訊號傳至馬達驅動器來控制車輪與手臂的馬達。同時利用超音波感測器做為模糊控制的輸入並輸出相對應的目標轉速,使用霍爾感測器取得目前車子移動的狀態以及PIDNN (Proportional-Integral-Derivative Neural Network)控制器給予對應的控制訊號維持當前的速度。最佳路徑規劃是使用A-star演算法,實驗的場地會在各個轉彎處使用QR Code作為標記點,以利於四輪移動平台知道自己的位置並且執行對應的指令。最後,透過實驗驗證具手臂四輪移動平台能以最佳路徑移動至目標倉庫前執行抓取的任務。
  • Item
    具機械手臂之履帶式機器人協作任務之實現
    (2023) 謝佩哲; Hsieh, Pei-Che
    目前履帶式與機械手臂的相關技術已經越來越成熟,但是大部分的研究,還是將兩者分開來分別進行探討,鮮少討論結合的應用策略,因此本文嘗試結合履帶式機器人的移動導航與機械手臂的物件抓取等功能,以實現跨樓層移動取物、多平台的溝通整合以及具交集工作環境的人機協作任務為目標,提出演算法與系統架構。本文所使用的機器人平台為自行研發裝載了五軸機械手臂的履帶型機器人,透過雷射測距儀和超音波感測器的輔助,搭配牆面校準演算法,完成自動爬梯。為實現近端定位,利用ArUco圖示輔助,引導機器人更精準地移動至目標地,接著使用TensorFlow-Lite提供的物件偵測模型,找出場景物件,並建立3D虛擬環境,再根據場景模型,計算機械手臂的路徑規劃,進行物件抓取。另外本研究透過socket自行開發可以與非機器人作業系統架構開發的機器人進行溝通的簡易方式,讓履帶機器人可以跨平台收到由另一台機器人發送的取物需求,進行跨樓層取物的任務,並透過Mediapipe提供的手勢辨識模型,讓人類使用者以簡易手勢與機器人進行簡易的任務溝通,實現具交集工作環境的人機協作任務。
  • Item
    應用於四輪移動機器人車的動態避障系統
    (2021) 郭勝斌; Kuo, Sheng-Pin
    本論文藉由整合四輪驅動車與機械手臂,完成一台移動機器人車。我們設計一結合了光流法與 SVM 分類器的移動行人影像運動偵測系統,以實現移動機器人的動態避障功能。此外,亦設計了一僅以單一影像輸入的影像伺服控制系統,用以精確的控制機械手臂完成夾取作業。最後,整合上述兩項功能,使移動機器人可以在複雜的工作環境中避障移動以完成夾取作業。移動機器人車的移動速度控制功能是由模糊控制器串聯比例、積分及微分控制器(Proportional-Integral-Derivative, PID)在微控制器中實現。應用於機械手臂的影像伺服控制系統利用單目測距,以單一組攝影機提供的影像輸入計算出目標物件的世界座標。將此資訊回傳至微控制器後,由微控制器計算並控制機械手臂移動至夾取物體的姿態。最後,移動機器人車透過整合實驗,驗證此機器人可以完成夾取指定物件,並在移動過程中對於行人進行避障的任務。
  • Item
    雙軸機械手臂之適應性神經網路滑動模式控制
    (2013) 鄭百恩; Pei-En Cheng
    本研究之目的是針對機械手臂之循軌控制提出適應性神經網路滑動模式控制方法。於系統模型部份已知的情況下,運用極點配置法來設計標稱控制器指定機械手臂之理想動態,並透過滑動模式干擾估測器及適應性神經網路補償器將系統的不確定性及外部干擾予以補償,以實現指定的理想動態。 系統控制架構中之滑動模式干擾估測器用於提昇整體控制架構之初始性能,並對於未知的干擾給予快速有效的補償,以提升系統的強健性能。相對於適應性神經網路控制器透過自訂的適應性法則,將未知干擾建模於神經網路規則庫;當建模完成便可依據系統之狀態,查得目前的系統干擾,以達到即時的干擾補償,可進一步改善滑動模式干擾估測器補償的相位落後問題。 本文實驗平台方面,採用美國德州儀器公司(Texas Instruments Incorporated, TI)所生產之TMS320C6713 DSP搭配具FPGA之自製擴充子板為控制器核心。在FPGA方面,以硬體描述語言(VHDL)撰寫Encoder, ADC與DAC等週邊界面程式;在控制法則實現上,利用TI所提供的Code Composer Studio (CCS)發展環境,以C/C++撰寫控制器程式並下載到DSP上執行。藉由本實驗室自製的雙軸機器手臂實驗平台進行追圓軌跡控制,結果顯示能有效提升循軌的表現及降低循軌誤差。
  • Item
    機械手臂結合影像系統之控制
    (2012) 葉傅文; Fu-Wen Ye
    本論文的研究內容為使用機械手臂結合影像辨識系統,取得工作空間中目標物件之座標,以進行物件的抓取或移動。由於機械手臂在現實生活當中的應用存在許多變數,不同的任務下針對物件姿態所能容許的移動方式可能有所限制,例如移動盛水的杯子要避免傾倒的姿勢。一般過去的研究僅強調物件定位的精確度,而並未考慮機械手臂的姿態,有鑒於此,本控制系統會在執行物件的抓取時,依據任務之目的切換不同的控制策略,以符合正確的任務目的與物件擺放姿態。 若要將機械手臂整合影像系統並成功應用於實作,則必須依照工作空間內的變化做出即時的運算,本研究除了利用影像處理進行物件的輪廓與顏色判別外,還配合夾爪上的雷射光模組所投影的光點作為回饋進行定位。在本研究當中所使用的機械手臂具有六軸關節存在運動學冗餘度的問題,因此本研究之系統必須事先進行D-H座標系統的順向與逆向運動學分析,推算出三維空間卡式座標系統與機械手臂各關節馬達轉動角度之間的關係,如此一來才能實現快速、靈活與準確的控制。本研究最後成功建立一套通用的多軸機械手臂控制方法,能夠應用到各種類似配置的機械手臂上,透過影像處理分析攝影機接收到的資訊,以應付各種不同的環境下更加複雜的應用與操作。
  • Item
    應用強健性重複滑動模型控制於機械手臂定位追跡控制器設計
    (2015) 張煒騰; Wei-Tang Chang
    本研究利用非線性控制理論實現重複控制結合滑動模型控制於非線性系統之四軸機械手臂上,使得輸出的追跡效能具有較高精度,且在外部干擾訊號以及系統未知項影響下有較佳的強健性。 機械手臂精密運動控制在實際的應用上經常面對不同型態的負載,如不可預測的外部干擾訊號、系統未知項(System Uncertainty),或是系統模型自身的影響:重力、柯氏力、慣性力等等,在不同型態的負載影響下使得系統輸出效能的精準度與穩定性受到影響。為了有效提高系統的輸出效能,必須對外部干擾訊號以及系統未知項的影響加以抑制。本研究致力於機械手臂的精密運動控制。其中滑動模型控制設計用來消除外部干擾訊號以及系統模型的影響,增加系統的強健性。結合重複控制抑制系統未知項的影響,即使系統包含未知項依然能夠達成追跡控制。
  • Item
    應用可變步長適應滑模結合指數律演算法於機械手臂追跡之控制器設計
    (2015) 楊智翔; Zhi-Xiang Yang
    本研究主要在於結合指數律(exponential law, EL)於可變步長適應滑模控制器(variable step size adaptive sliding mode controller, VSSASMC)並應用於機械手臂的追跡。在設計控制器時考慮到機械手臂的不確定量與外界干擾,於是本研究選擇具有良好強健性的滑動模式控制器為主控制器。而滑動模式控制中有一設計參數為切換增益(switching gain),此參數必須大於系統的干擾和不確定量的上界(upper bound),但是通常我們並無法直接知道上界值只能通過重覆測試調整。為了使系統能夠應付未知邊界的不確定量與干擾,本研究加入適應控制調整滑動模式中的上界參數,使控制器能應付多變的情況。 而適應控制本身則會使系統響應變慢,因此引入了指數律使系統更快收斂。而指數律不只可以與滑動模式控制結合達到減小跳切現象的效果;同時也能和適應控制結合成可變步長適應控制,使適應律的步長依誤差而調整。並且通過Lyapunov函數及Barbalat引理證明系統穩定性。最後經由實驗驗證此控制器的性能。