科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於人臉網格的一種對於化妝與跨年齡的臉部辨識
    (2024) 陳勁凱; Chen, Chin-Kai
    臉部辨識是一種重要的生物識別技術,在多種應用中得到廣泛使用。然而,化妝以及年齡變化會使人臉發生變化,進而影響人臉上的特徵,從而降低臉部辨識的準確性。為了解決化妝以及年齡變化造成的臉部辨識問題,本論文提出了一種基于MediaPipe的FaceMesh和類神經網路的臉部辨識方法,以解決化妝以及年齡變化造成的臉部辨識問題,該方法將在Python內部逐步構成。MediaPipe FaceMesh模型的人臉偵測是以 BlazeFace 人臉偵測器為基礎,該偵測器會對圖像進行操作並計算人臉位置。偵測到人臉後,FaceMesh模型會使用一個自定義殘差神經網絡提取名為landmark的臉部特徵,並利用歐式距離和landmark蘊含的座標資料計算指定的landmark之間的距離以及比值,作為訓練用的臉部特徵。主成分分析用於提高準確率,降低過擬合現象。類神經網路用於訓練模型。實驗結果表明,該方法在化妝以及年齡變化下的臉部辨識有一定的準確性,具有一定的應用價值。
  • Item
    自然影像中的光譜估計
    (2009) 陳志沂; Jr-yi Chen
    彩色影像的呈現是由物體反射譜或透射譜、光源的光譜分佈及人眼感知三項變數交互作用而成,在拍攝過程中,會因為環境光源的變化導致影像中物體的顏色失真,想如實地呈現影像的色彩就必須掌握拍攝時環境光源的狀況。本研究的目標是希望可以利用色彩學的概念和統計學的方法來估計影像拍攝時環境光源的頻譜,以利模擬出接近物體原始色彩的影像。 基於上述的動機,本研究計畫利用主成分分析(Principal Component Analysis)、支援向量回歸(Support Vector Regression)兩種方法來重建影像中日光的光譜,並比較兩個方法在光譜重建上的效果。希望能藉由實驗結果來提高影像顯示的準確性,並應用於影像合成、數位典藏等領域,讓我們可以透過修正影像中的光源頻譜,來獲取更佳的影像表現。
  • Item
    基於主成份分析法與灰關聯分析法之動態人臉辨識
    (2007) 邱柏智; BO-JR Chiou
    人臉辨識系統廣泛地應用於身分認證、門禁管理與人機界面等領域,近年來由於「智慧生活」科技的提倡,人臉辨識技術已延伸至人與機器最佳化介面之應用。此外視訊會議、影像內容檢索與醫學影像處理等方面,亦是其重要之應用領域。 本篇論文分為人臉偵測和人臉辨識兩大部分。在人臉偵測的部份,我們利用膚色分割和連通成份的方法找出人臉候選區,再使用色彩分析的方法從人臉候選區中尋找眼睛和嘴唇的特徵,最後再使用眼睛和嘴唇的幾何條件關係去定位出正確的人臉位置。在人臉辨識部分,我們提出一套結合主成份分析法與灰關聯分析法的人臉辨識方法,此方法的架構分為以下三個階段:首先,在影像前處理的階段,我們使用二維小波轉換,對輸入影像做資料壓縮的處理,接著,利用主成份分析法將壓縮過的人臉影像,投影到低維度的子空間中,計算出具有代表性的特徵臉,最後,再使用灰關聯分析法,來辨識出正確的人臉圖片。 為了驗證本篇所提出的方法,在靜態辨識實驗中,我們使用ORL人臉資料庫,做了一些分析和比較的實驗,實驗結果證明,在40人條件下,訓練樣本為五張時,可以得到91.6%的辨識率。而本篇方法在動態辨識實驗中以不同距離拍攝人臉,在30人條件下,可以得到八成以上的辨識率。