科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    鐵電電容式記憶體特性及研究
    (2023) 曾涵楨; Tseng, Han-Chen
    鐵電材料是一種具有雙穩態特性的材料,在電場的作用下能夠產生持久的極化狀態,也能夠在無外部電場的情況下保持所極化的狀態,並即在不同的極化狀態之間切換。這種特性使得鐵電材料成為理想的記憶體元件,可以實現高密度、非揮發性的數據存儲,使其廣泛應用於記憶體中。本研究選擇摻雜不同鋯濃度的氧化鉿鋯(Hf1-xZrxO2, HZO)作為鐵電材料,並對其特性進行了深入研究和應用。鐵電電容式記憶體(Ferroelectric Capacitive Memory, FCM)主要分為累積式FCM和反轉式FCM,同時都有低功耗、快速的寫入速度、長時間保持性和耐久度等優點,並應用於類神經運算。通過TCAD模擬的結果,觀察到反轉型FCM施加負偏壓時,n+摻雜區產生帶對帶穿隧效應。製作不同鐵電層濃度和結構的FCM元件,結果顯示MPB( Morphotropic Phase Boundary) SL(superlattice)-HZO具有較高的開關比,並且在保持度和耐久度量測中表現出更優異的性能,具有對稱性| αp - αd | = 0.03 ~ 0.35的深度學習操作,展現成為類神經突觸元件的能力。
  • Item
    氧化鉿鋯之鋯濃度最佳化應用於三維垂直式鐵電穿隧接面元件與低溫翻轉響應之鐵電隨機存取記憶體
    (2023) 張福生; Chang, Fu-Sheng
    由於鐵電氧化鉿鋯(Hf1-xZrxO2, HZO)材料具有極化的特性應用於非揮發性記憶體研究,此論文透過原子層沉積調控摻雜鋯的比例以研究鐵電穿隧接面元件(Ferroelectric Tunnel Junctions, FTJ),更進一步設計三維立體垂直式FTJ,實現高密度陣列記憶體,在相同面積占比下堆疊FTJ元件,並展示其具有邏輯閘操作潛力,電流開關比達到1500倍,此外透過低溫量測來探討鐵電記憶體(FeRAM)的操作速度極限,結果顯示反鐵電電容的操作速度優於正鐵電電容,且證明部分四方晶相 (tetragonal phase)主導的反鐵氧化鉿鋯在低溫下會部分轉變成正交晶相 (orthorhombic phase) 進而導致殘餘極化量上升創造更佳的記憶存取空間,提升反鐵電電容應用在未來新興記憶體的潛力。
  • Item
    超薄氧化銦基電晶體製程
    (2023) 芮瑋呈; Ray, Wei-Cheng
    由於電晶體的微縮持續發展,處理器核心速度提升為 Moore Law(摩爾定律),但整體性能的系統與能量消耗問題仍存在瓶頸,記憶體與邏輯內核間數據流量大幅上升,造成功耗損失迫使處理器增加等待數據時間,為了解決此瓶頸利用3DIC(積層型三維積體電路)的異質整合來達成computing-in-memory(CIM)記憶體內運算,並且(Monolithic 3D;M3D) 單體3D有高密度的優勢。除了傳統半導體Poly-Si,氧化物半導體作為通道選擇,具有製程相容性,以免除磊晶高成本低產出缺點,並且氧化物半導體具有低溫製程的優勢,所以能應用在後段製程(BEOL-Back end of line),此實驗成功濺鍍10nm In2O3(氧化銦) 材料作為通道於鐵電容整合打造出M3D垂直立體結構元件,且在BEOL製程的應用,並以量測結果證實閘極閾值電壓(ID-VG)成功繞出順時鐘的路徑轉換至逆時鐘的路徑,具有鐵電的特性。鐵電電場與極化,P-V量測結果,成功繞出PV-Loop鐵電遲滯曲線,證實In2O3與鐵電容整合的元件,具有鐵電的電容。另外為了改善In2O3通道材料,增加製程上熱預算的限制,成功濺鍍超薄2nm IWO(氧化銦摻鎢)於薄膜電晶體的元件,並有極好電流開關比達到>107 以及很高的載子遷移率10.64 cm2/V-s,IWO作為通道材料,未來應用於BEOL的M3D有很大的潛力,有望大幅提升未來元件的效能。
  • Item
    鐵電電晶體之類比式操作與後段製程相容之設計
    (2022) 羅肇豐; LOU, Zhao-Feng
    為達到人工智能(AI)之物聯網(IoT)及高速傳輸之5G/6G科技,高密度的記憶體內/近運算高度需求。近年來各方領域的近記憶體運算與記憶體內建邏輯紛紛被提出,利用各種新興非揮發性記憶體(Emerging non-volatile memory, e-NVM) ,以實現內部存取並執行邏輯操作減少耗時與耗能的問題。本論文便是討論鐵電電晶體之類比式操作與後段製程相容之設計。研究中採用直流 (DC) 掃描、脈衝測量、Endurance和Retention的方法來研究元件特性。因此,第二章會介紹實驗的測量設備和波形設置。在第三章中,驗證雙 HZO 鐵電場效應電晶體 (FeFET) 可多階操作 (MLC)以 提高NVM密度。與單HZO FeFET 相比,金屬層/鐵電層/金屬層/鐵電層/矽基板 (MFMFS) FeFET 能夠在 ±3 V 的超低寫入/抹除電壓 (VP/E) 下實現2-bit位操作,並具有穩定的數據保持能力>104秒和>107次循環的耐用性。此外,通過使用金屬層/鐵電層/介電層/鐵電層/矽基板結構將記憶窗戶(MW)擴大至2.6 V,讀取錯誤率(ER)比單HZO低600倍。兩種雙HZO FeFET都通過使用電壓調整的方案展示具有高度線性和對稱性的深度學習能力。 在第四章中,完成具有>106高開關電流比(Ion/Ioff)和4cm2/V⸳s 遷移率的無退火 In2O3 薄膜電晶體 (TFT),採用20sccm的Ar和15 W的濺射系統沉積。最後將鐵電電容與In2O3-TFT串聯,成功觀察到磁滯特性,並完成FE電容與In2O3-TFT的面積比對磁滯差異進行實驗驗證。因此,In2O3-TFT 有望在未來與鐵電記憶體整合,用於後端製程 (BEOL)。
  • Item
    鐵電氧化鉿鋯材料於非揮發性電阻式元件之未來新興記憶體應用
    (2021) 劉人豪; Liu, Jen-Ho
    鐵電二氧化鉿鋯(Hf1-xZrxO2)材料因具有雙穩態(Bi-stable)的特性,使其能在外加偏壓為零時仍具有兩個穩定的極化狀態,此特性使得它具備成為新興非揮發性記憶體(Non-volatile memory, NVM)的潛力,預期在未來人工智慧(Artificial intelligence, AI)和類神經運算(Neuromorphic computation)的應用中扮演至關重要的角色。截至現今已經有相當多關於鐵電材料於記憶體的研究,而本論文主要探討調變HZO中摻雜鉿(Hf)與鋯(Zr)的比例,並成功開發反鐵電(Anti-ferroelectric)材料應用於電阻式記憶體元件,且在記憶體特性上皆優於正鐵電(Ferroelectric)材料。本論文第二章研究結果為反鐵電介面二極體(Anti-ferroelectric junction diode)的記憶體具備單極性操作的能力,且記憶體的開關比例(On/Off ratio)達到100倍和耐受性(Endurance)可達到109次;而第三、四章則展示雙層反鐵電穿隧式記憶體(Bi-layer anti-ferroelectric tunneling junction)具有大於100倍的On/Off ratio和大於50倍的穿隧電阻比(Tunneling electro-resistance, TER),耐受性與資料保存性(Retention)分別可達到108次與大於104秒,並且在調控不同寫入的脈衝電壓下,顯示具有多階儲存單元的能力(Multi-level cell)與深度學習(Deep Learning)的特性,使其具備成為高密度且低功耗的非揮發性記憶體應用於類神經運算的潛力(Neuromorphic computation)。
  • Item
    鐵電與反鐵電Hf1-xZrxO2多階操作及暫態負電容於低功耗記憶體內運算之應用
    (2021) 謝馥竹; Hsieh, Fu-Jhu
    在過去的十年中,鐵電材料被作為熱門的研究題目之一,當鐵電應用在電晶體時,具有電壓放大、能降低次臨界斜率(SS)突破60mV/dec的極限和負電容特性 (Negative Capacitance, NC),所以負電容也是FeFET應用中的重要課題。為了理解NC效應的頻率響應,我們在Hafnium–zirconium oxide (HZO)中配置了不同的Zr濃度,不同的電容器連接模式(並聯或串聯)以及不同的電容器面積,以提高負電容效應。兩種方法分別顯示了不同頻率測量下NC的影響,得到了以下兩個結論,第一個並聯使用兩個HZO電容器以增加HZO電容器的總電容; 第二個將高電容的HZO電容器與介電電容器串聯使用,以通過不同頻率C-V測量的NC效應獲得電容放大。我們研究了HZO基材料中三種Zr濃度([Zr]=50%,75%,90%),以證明帶有FE和AFE電容器的NC的頻率響應。最後總結來說,並聯連接的HZO-Zr50%+ HZO-Zr75%可以在<30 kHZ的頻率下獲得更高的電容,這表明存在NC效應。 在記憶體的應用,基於鐵電HfO2閘極堆疊的鐵電場效電晶體(FeFET),具有穩定遲滯現象(Hysteresis)和非破壞性讀取的特性,可用於多級單元(MLC)操作的非揮發性記憶體(NVM)。矯頑電場(EC)和殘餘極化(Pr)都是鐵電薄膜改變FeFET閾值電壓(VT)的決定性參數。在這項工作中,採用HZO不同厚度和濃度的調控來實現每一個記憶單元下可存入2~3位元的NVM。 在成功做出記憶體之後,未來可能面臨的問題不外乎為記憶體可靠度的提升。我們知道當HZO中的Zr濃度為50%時,會形成典型的FE。從FE的遲滯曲線可以看出,極化可以在沒有外部電壓的情況下存儲,並且正向和反向掃描將有兩個閾值電壓(VT),可以將其定義為“ 0”和“ 1”以用於非揮發性記憶體。當Zr為75%時,它將變為AFE。在沒有電場的作用下,AFE的遲滯曲線在兩階之間顯示出很小的差異,因此不適合用於非揮發性記憶體。實驗的目的是使用高濃度Zr(75%)Hf0.25Zr0.75O2分別在上下電極使用不同功函數材料。由功函數差異產生的內建電場將AFE的遲滯曲線移位,因此完成不施加偏壓的即可產生非揮發性記憶體的特性,使AFE與FE有相同的記憶特性。進而我們可以使用較小範圍的電壓來操作記憶體,從而可以降低功耗並延長記憶體的使用壽命。
  • Item
    鐵電氧化鉿鋯之負電容效應及類神經元件應用
    (2019) 向國瑜; Siang, Guo-Yu
    鐵電材料的遲滯現象(Hysteresis)具有雙穩態的特性,滿足記憶體對於信號的存取要求和負電容特性(Negative capacitance, NC)電壓放大的概念,因此近年來對於鐵電材料進行廣泛的研究。由於負電容特性改善次臨界擺幅(subthreshold swing, SS),使MOSFET的SS在室溫下克服Boltzmann tyranny 2.3kbT/decade的物理極限,另一方面具有穩定遲滯現象和非破壞性讀取的特性適合作為非揮發性記憶體(Non-Volatile Memory, NVM)。 本論文將針對鐵電材料氧化鉿鋯(HfZrO2, HZO)作為元件絕緣層的特性進行研究,首先將研究環繞式閘極場效電晶體搭載鐵電薄膜後,達到負電容效應,再來使用鐵電材料與非揮發性記憶體結合,研究應用於深度學習(Deep Learning, DL)且搭配不同結構與波型,尋找最佳的資料演算方式。
  • Item
    鐵電負電容效應之奈米片環繞式電晶體
    (2018) 古翔升; Gu, Siang-Sheng
    鰭式電晶體廣泛應用在許多3C產品中,例如:手機iPhoneA9處理器、電腦IC晶片……等,而在未來製程節點中,改善次臨界擺幅SS(Subthreshold Swing)降低元件之操作電壓與功率極為重要,本論文藉由導入HfZrO2鐵電材料當作電晶體的介電層,應用鐵電材料之負電容效應改善次臨界擺幅(SS)。 近期IBM團隊提出奈米片結構電晶體(Nanosheet FET),有別於鰭式電晶體,奈米片電晶體是參考Gate-All-Around(GAA)電晶體結構, Si通道設計成水平的結構,可有效解決鰭式電晶體鰭高的製程瓶頸,並廣泛應用在各大領域中,例如:人工智慧(AI)、虛擬實境(VR)……等,本論文是以鐵電材料HfZrO2作為介電層,應用於奈米片電晶體中,達到俱有鐵電負電容效應之奈米片電晶體,其中黃光製程部分皆使用I-line步進機,可以提高生產效率。
  • Item
    HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測
    (2016) 石登元; Shih, Teng-Yuan
    鐵電材料是目前熱門的研究目標之一,現今科技的發展使得我們對於電子元件的尺寸追求越來越小。然而傳統鐵電材料所鍍製的薄膜厚度大約幾百奈米,薄膜的漏電也非常大,從而影響鐵電材料在記憶體上的應用。所以科學家們開始尋找新型的鐵電材料,並且發現HfO2和ZrO2等材料,有機會取代傳統鐵電材料。其中HfO2更是許多科學家所看好的新型鐵電材料選擇,並嘗試使用不同的鍍製方式來探討HfO2薄膜所能展現出的鐵電特性。 在本研究中,我們將利用高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)來製備HfO2鐵電層。試片的基本結構上為,在P-type矽基板上使用DC sputter鍍製下電極的Mo,再來是鐵電層HfO¬2,最後則是上電極的Al。實驗總共會有三組Sample的變化。Sample 1為在HfO2層中摻雜Zr形成HfO2:Zr薄膜。Sample 2則是在HfO2層上鍍製一層Zr層。Sample 3是在HfO2的上下方分別鍍製TiN層以及ZrN層兩種結構變化。試片完成後,做鐵電性的量測,並配合物性測量作分析。最後,本研究在三組Sample中皆有發現極化現象。在Sample 1中得知HIPIMS鍍製時,氧氣通量在10 sccm表現最佳,並且RTA在850℃時無鐵電性表現。在Sample 2中得知Zr摻雜在HfO2的量不是越多越好,在TEM中看出HIPIMS鍍製時Hf對Mo層造成損害的情況,這情況在Sample 3的結構中能有效的改善。而Sample 3試片的鐵電性在三組中是表現最好的,TiN與ZrN在RTA溫度上的趨勢表現相反,推測是因為兩者在應力結構上表現不同。 關鍵字: 高功率脈衝磁控濺鍍、鐵電材料、二氧化铪
  • Item
    以脈衝雷射鍍膜法成長PMN-PT薄膜及其性質量測
    (2005) 歐信良
    摘 要 本研究是利用具有快速鍍膜及保持多元系統化學計量比的脈衝雷射鍍膜法( pulsed laser deposition,PLD )來進行0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT)鐵電薄膜的生長。在判斷靶材與薄膜的相鑑定方面是以X-ray繞射儀來進行,薄膜厚度則是利用X-ray反射法來量測。由實驗的結果發現:在鍍膜溫度為600℃~700℃、氧壓為2x10-1 torr,可以在MgO(100)基板上成長出磊晶結構的薄膜;薄膜磊晶結構的品質則利用Φ- scan加以確認。 實驗中藉由成長不同時間的薄膜,發現薄膜在成長時間超過60分鐘後性質上的差異。薄膜的折射率及消光係數是利用橢圓偏光儀來量測,薄膜的表面粗糙度則是利用原子力顯微鏡掃描所獲得。由實驗亦發現:當薄膜成長時間超過60分鐘,開始出現(110)及焦綠石相等其它非磊晶的結構,這樣的現象亦可由折射率和消光係數的變化及表面粗糙度的大幅增加得到印證。最後,成長La0.5Sr0.5CoO3 (LSCO)為上下電極,順利的量測到薄膜的介電性及鐵電性(極化強度-電場)。