科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    即時監控系統之嵌入式軟體平台設計
    (2008) 高志忠
    人臉偵測與人臉辨認在監視系統、智慧型人機介面與安全資訊擷取上面非常有用。有非常多傑出的論文提出演算法解決人臉偵測與人臉辨認的問題。然而,非常少的論文考慮關於整合曝光控制、影像擷取、人臉追蹤與有效率人臉辨認的系統並且實現於行動的數位相機系統上。 本論文提出一個完整的監視系統並且實現於一個商業的數位相機產品上,本方法一開始先針對使用膚色機率模型偵測到的人臉進行調整曝光控制來確保臉部的曝光控制正確。接下來抽取出眼睛、鼻子與嘴唇的可能位置,然後正確的人臉位置就可以藉由特徵間相對位置的模組來確認。最後,被切割出的人臉區域使用DCT係數的執行人臉辨認並且使用支持向量機來分類。實驗結果顯示提出的系統很穩定並且可以達到及時的應用。
  • Item
    膚色偵測器應用於即時臉部擷取系統
    (2007) 鄔誌仁; Zhi-Ren Wu
    人臉偵測系統在人臉辨識、人機介面裝置以及影像監視器的應用上扮演非常重要的角色。本篇論文提出一套針對不同亮度做補償之膚色偵測器,由於膚色極容易受光線影響,因此,必須做一些適當的光線補償。首先,本篇先對輸入影像做光線補償來做亮度校正。隨後,我們利用訓練出的CbCr值來做膚色分割。在訓練過程中,採用「主軸k-means」演算法將膚色訓練資料做分群處理。在特徵擷取部分,利用眼睛、嘴巴,以及比較少見的頭髮等三個特徵來定義人臉區域。實驗結果顯示出,本篇論文所提出的方法已改善光線所產生的問題,而且系統可以即時工作,在膚色偵測率高達95.02%;針對較複雜背景情況的靜態人臉偵測率高達91.67%;動態人臉偵測率高達97.78%。在此,我們主要是針對正臉以及接近正臉的人臉來做實驗,對於背景太複雜的情形下,仍然有偵測不到的現象。
  • Item
    基於主成份分析法與灰關聯分析法之動態人臉辨識
    (2007) 邱柏智; BO-JR Chiou
    人臉辨識系統廣泛地應用於身分認證、門禁管理與人機界面等領域,近年來由於「智慧生活」科技的提倡,人臉辨識技術已延伸至人與機器最佳化介面之應用。此外視訊會議、影像內容檢索與醫學影像處理等方面,亦是其重要之應用領域。 本篇論文分為人臉偵測和人臉辨識兩大部分。在人臉偵測的部份,我們利用膚色分割和連通成份的方法找出人臉候選區,再使用色彩分析的方法從人臉候選區中尋找眼睛和嘴唇的特徵,最後再使用眼睛和嘴唇的幾何條件關係去定位出正確的人臉位置。在人臉辨識部分,我們提出一套結合主成份分析法與灰關聯分析法的人臉辨識方法,此方法的架構分為以下三個階段:首先,在影像前處理的階段,我們使用二維小波轉換,對輸入影像做資料壓縮的處理,接著,利用主成份分析法將壓縮過的人臉影像,投影到低維度的子空間中,計算出具有代表性的特徵臉,最後,再使用灰關聯分析法,來辨識出正確的人臉圖片。 為了驗證本篇所提出的方法,在靜態辨識實驗中,我們使用ORL人臉資料庫,做了一些分析和比較的實驗,實驗結果證明,在40人條件下,訓練樣本為五張時,可以得到91.6%的辨識率。而本篇方法在動態辨識實驗中以不同距離拍攝人臉,在30人條件下,可以得到八成以上的辨識率。