科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    基於深度學習之路面破損檢測
    (2021) 章皓鈞; Chang, Hao-Chun
    目前國內的道路維護方式多為定期派遣工程車檢測以及依賴人民的通報,而為了盡早的發現道路損壞並進行修復,本研究運用Mask R-CNN深度學習之方式建立道路破損辨識模型。透過Mask R-CNN深度學習演算法,以及運用python 、OpenCV撰寫進行道路破損檢測與資料整合,持續的分析模型數據並根據結果進行再訓練。利用路面破損辨識模型檢測出路面上的龜裂、裂縫、補綻、變形以及坑洞,並在龜裂、裂縫、補綻、變形達到86%以上的召回率,精確率除了裂縫、坑洞之外有82%以上,此外對檢測出來的破損範圍進行面積計算,為日後養護維修提供面積的量化指標,進而輔助人力巡查作業。
  • Item
    影像處理應用於矩陣LED瑕疵檢測之研究
    (2018) 張先任; Chang, Hsien-Jen
    矩陣發光二極體(Matrix Light Emitting Diode, Matrix LED)是業界應用最廣泛的LED材料之一。因為矩陣LED是個低單價的產品,加上檢測機台成本太高,使得廠商購買意願降低,所以矩陣LED瑕疵缺陷仍然由人工進行檢測。隨著人工成本提升和人工檢測的不穩定性,我們需要應用自動光學檢測(Automated Optical Inspection, AOI)解決矩陣LED瑕疵檢測的問題。在這本論文研究中,我們提出了一套有效的矩陣LED檢測系統。該系統提供三種檢測,第一為表面刮傷瑕疵、第二為RGB亮暗點檢測、第三為使用支援向量機(Support Vector Machine, SVM)進行亮暗點分析。 在表面刮傷瑕疵檢測主要由SURF (Speeded-Up Robust Features)特徵匹配結合透視變換進行圖像校正,然後在輪廓檢測部分本文使用FindContours函式,接著找出瑕疵邊緣使用Canny邊緣檢測,該方法的準確度可達98.00%,檢測每顆矩陣LED需花2.95秒。 RGB亮暗點檢測使用ROI擷取每顆LED後,使用cvAvgSdv函式計算R、G、B平均值,首先與前一顆LED進行G值的比較,將有色差LED檢測出來,最後與制訂範圍進行判斷,該方法的準確度可達到98.00%,實驗結果顯示,檢測每顆矩陣LED需花0.01秒。 最後,使用SVM結合HOG進行圖像分類,解決矩陣LED亮暗點的問題,其準確率可達98.33%,執行速度上,檢測每顆矩陣LED需花0.38秒。實驗結果顯示,所提出的方法是有效的,並勝過以前的方法。
  • Item
    影像處理趨向發光二極體光源演色性改善於影視製作應用之研究
    (2011-07-31) 周遵儒
    在傳統燈具逐漸被取代及停止販售的趨勢下,影視製作用之攝影棚燈具也將逐漸被更換成發光二極體(Light Emitting Diode,LED)光源燈具。然而,LED燈具雖然有諸多優點,其光譜組成與自然日光相距甚遠,演色性不佳的問題,運用在影視製作上,會造成顏色逼真程度不足,使得色彩呈現的效果無法達到廣播等級的專業需求。 本研究將針對實際影視製作流程的特性,亦即所有的視覺效果呈現都在影像顯示之後而非攝影棚中,基於這個概念,我們提出一種影像處理趨向的解決方案,以解決照明光源演色性不佳問題,針對照明光源與物體反射譜(Object Spectral Reflectance)進行多頻譜分析(Multi-spectral Analysis),並透過最佳化物體反射譜的估計,模擬出近似自然光源照明的效果。預期本研究結果能為影視製作領域提供一套全新的LED光源演色性改良方法,更符合真實影視製作上的需求。