科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    釩金屬有機框架應用於可撓性二氧化氮感測器之研製
    (2023) 黃兆溎; Huang, Jaho-Guei
    石化燃料的不完全燃燒以及汽機車的排氣是大氣中NO2之主要來源,長期吸入NO2會對人體帶來嚴重且不可逆的為害,故需要開發一種能即時監控NO2濃度的氣體感測器。本研究以釩作為金屬離子,對苯二甲酸(Terephthalic acid, PTA)和均苯四甲酸(Pyromellitic acid, PMA)作為有機配體(Organic ligand),透過改變水熱法之加熱溫度(120 °C與150°C),分別製備出四種釩金屬有機框架(Metal organic framework, MOF)作為感測材料,分別為V-MOF120(PTA)、V-MOF150(PTA)、V-MOF120(PMA)和V-MOF150(PMA)。將這些材料塗覆在聚醯亞胺(Polymide, PI)薄膜以CO2雷射誘導石墨烯(Laser-induced graphene, LIG)的指叉電極表面,完成可撓式氣體感測器之開發。將四種感測器在室溫100 ppm的NO2氣體濃度下進行檢測,V-MOF120(PTA)展現794 %的高響應,高於V-MOF150(PTA)的751 %、V-MOF120(PMA)的338 %和V-MOF150(PMA)的424 %。其中,以PTA作為有機配體所製備的感測器,平均響應值為770 %,優於PMA感測器的平均響應值381 %。V-MOF120(PTA)在五次的連續循環下平均響應值為800.8 %,平均響應時間與回復時間則分別為230秒和39.8秒,說明其具有良好的穩定性與重複性,且在1 ppm NO2氣體下仍具有83 %的低LOD響應性能。此外,V-MOF120(PTA)感測器的濕度測試發現,在溼度40-60%的變化時響應值影響不大,而在100 ppm的乙醇、甲醇、和丙酮環境下,響應值則分別僅有–220 %、–200 %和–100%,對比於NO2氣體794 %的響應值,展現其具有不錯的氣體選擇性。最後,對氣體感測機制進行探討,且將本實驗結果與文獻進行比較,證實本研究所製備的V-MOF120(PTA) 在開發實用的室溫型NO2氣體傳感器展現極佳的應用潛力。
  • Item
    氧化鋅奈米柱在兆赫波段之導電率和光學常數之探討及其應用
    (2019) 許耀文; Hsu, Yao-Wen
    本研究利用兆赫波時域光譜來研究氧化鋅奈米柱結構的透射率,進而去計算出不同水熱生長環境製成氧化鋅奈米柱複介電系數、光導率、進而使用德魯德史密斯模型得出氧化鋅材料的遷移率和兆赫波電導率。 本論文使用水熱法成長氧化鋅奈米柱陣列,並使用光電導天線配置的兆赫波時域光譜對材料進行解析。飛秒雷射被分束器分成泵浦光束和探測光束,兩者都透過物鏡聚焦在光電導偶極子天線上,泵浦脈衝激勵光電導天線中的載流子,然後我們使用拋物面鏡來準直兆赫波並聚焦在樣本上,最後利用另一對拋物面鏡收集兆赫的透射率。 最後使用計算軟體求得材料的複介電系數、光導率和遷移率、並且比較不同水熱生長時間下的氧化鋅奈米柱對兆赫波時域光譜的影響。
  • Item
    氧化鋅奈米線應用於LED與其特性改良
    (2011) 黃秀麗
    發光二極體是一種極具潛力成為下一世代主要光源的固態照明技術。在發光二極體的發展過程中,歷來技術上之突破大幅改善其光電特性,但現階段發光效率仍不足,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,相較於傳統薄膜型發光二極體,具奈米線結構之發光二極體在相同注入電流下,會因量子侷限效應而提升其發光強度。本論文採用水熱法製備N型氧化鋅奈米線,選擇氮化鎵薄膜作為P型材料則,製作成異質接面發光二極體結構,並進行其特性之研究。另一方面,氮化鎵發光二極體因菲涅爾損失(Fresnel loss)及全反射現象而降低其光萃取效率,同樣可藉由氧化鋅奈米線之應用而有所改善,故本論文於氮化鎵垂直型發光二極體之出光面,成長氧化鋅奈米線,以提升其光萃取效率。 在P型氮化鎵薄膜/N型氧化鋅奈米線異質結構的製備上,本論文致力於元件串聯電阻的降低,以及改善漏電流現象。在降低元件串聯電阻的部份,經快速熱處理製程後,氧化鋅鋁成核層及氧化鋅鋁電流擴散層之最佳電阻率分別為7.165×10-3、2.141×10-3 Ω-cm。鋁摻雜之氧化鋅奈米線,分別使用硝酸鋁、氯化鋁及醋酸鋁做為鋁摻雜來源,由歐傑電子能譜及X光光電子能譜儀可檢測出氧化鋅奈米線有鋁的成分。在改善漏電流現象的部份,採用液態二氧化矽之溶液,旋塗在奈米線之間,並烤乾以形成薄膜,實驗結果顯示旋塗3次可以得到最佳之旋塗效果,並以RIE通CF4氣體蝕刻絕緣材料至露出奈米線表面,完成奈米線間之絕緣填充。 在N型氮化鎵出光表面製備氧化鋅成核層/氧化鋅奈米線,以改善光萃取效率的部分,本論文於未粗化與已粗化出光表面製備氧化鋅成核層/氧化鋅奈米線。實驗結果顯示,在未粗化之N型氮化鎵表面製備氧化鋅成核層/氧化鋅奈米線,可提升氮化鎵發光二極體之光輸出功率,當氧化鋅成核層之厚度為100 nm,水熱法溶液之濃度為35 mM,在350 mA之注入電流下,氮化鎵發光二極體之光輸出功率可提升151.47 %,為最佳結果。將氧化鋅成核層/氧化鋅奈米線製備於已粗化之N型氮化鎵表面,則會略微降低其光輸出功率。此外,製備氧化鋅成核層/氧化鋅奈米線於氮化鎵發光二極體之出光表面,可改善其二極體特性,IR良率亦略微提升,顯示成長氧化鋅奈米線可以減少漏電流現象。
  • Item
    具氧化鋅奈米柱之發光二極體製作
    (2010) 童建凱; Chien-Kai Tung
    發光二極體被視為未來主要的照明光源,高功率發光二極體於技術上屢有突破,但現階段發光效率的不足,使發光二極體無法取代傳統光源作為照明燈源的主流,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,將奈米線應用於發光二極體的結構製作,能有效提升其發光強度;而在各式成長奈米線的方法中,水熱法製備之奈米線具有高品質順向成長與製程簡易的優點,故本論文將採用此法成長氧化鋅奈米線,並以射頻濺鍍法沉積N型氧化鋅鋁薄膜,P型材料則選用氧化鋅與氮化鎵薄膜結構,藉以製備其氧化鋅奈米線之發光二極體,並進行其發光特性之研究。 在奈米線的部份,藉由水熱法成功製備氧化鋅奈米線,氧化鋅奈米線摻雜鋁部分,鑑於製程步驟與參數和文獻有所不同,故摻雜效果不彰,需以更多的參數進行測試。熱處理氧化鋅奈米線方面,可發現因缺陷產生的綠光波段強度明顯降低,並且對於降低阻值與能障有很大幫助。 P型氧化鋅部份,使用摻雜P2O5氧化鋅靶材,在具有氧化鋅緩衝層之藍寶石基板上,加熱至700 C,藉由氬/氧流量比例為1:3,沉積氧化鋅磷薄膜,並在氧氣的氣氛下冷卻。隨後氧化鋅磷薄膜經由RTA處理,有可能製備出P型氧化鋅薄膜。目前在RTA持溫溫度900 C,持溫5分鐘之處理下,已製備出局部P型氧化鋅薄膜,其載子濃度為8.7921018 cm-3,移動率為0.793 cm2 / V-s,電阻率為0.8953 -cm。實驗的結果推測可能是試片電性轉換不完全所致。未來將考慮以共濺鍍或熱擴散的方式,繼續P型氧化鋅薄膜之試驗。 發光二極體部份,目前已於P型氮化鎵(鎂摻雜,載子濃度約為1017 cm-3)薄膜上,成功製備氧化鋅奈米線/N型氧化鋅鋁薄膜結構,並完成發光二極體之晶粒製作,其尺寸為300 m 300 m。在約大於15 V的操作電壓下,以長工作距離顯微鏡可觀察到,發光二極體晶粒的部份區域放射出藍光,且發光強度隨著電壓增加而變大。但初期製作之串聯電阻極高,且電流分布不均,在改善電極形狀後,可以有效增加電流分布的範圍,並且經過製程順序的調整,能有效改善因快速熱退火處理對鋁電極產生的不良影響,讓發光區域增加。未來將以快速熱退火進行後處理,並檢測其電極是否形成歐姆接觸,以期提升性能,進而檢測其發光頻譜等特性。
  • Item
    水熱法成長氧化鋅奈米線陣列應用於染料敏化太陽能電池
    (2009) 陳冠文
    本研究使用溶膠凝膠法(sol gel method)製備氧化鋅薄膜,作為成長氧化鋅奈米線陣列基底,經退火處理後,可得到高結晶的微小表面顆粒種子層;水熱法(Hydrothermal method)的水溶液環境中利用氧化鋅特有極性表面特性,在同質氧化鋅種子層上成長奈米線陣列,控制反應水溶液濃度以及成長時間,製備出高準直性的奈米線陣列,得到最佳的電極長度與長寬比(L=2300 nm, L/D=46)。在水熱環境中摻雜2 at.%鋁使氧化鋅奈米線增強結晶性,使長寬比由46增加至60.5,改善電極表面形貌,鋁離子的嵌入亦能增強電子傳導性與材料表面極性,使奈米線電極對染料吸附能力增加、抑止ZnO2+/dye錯合物的產生。以更換反應水溶液方式持續成長摻雜鋁奈米線增加體表面積,接續成長方式使電極長度由2.3 m增加至6.6 m,而效率則由0.152%提升至0.834%。摻雜2 at.%鋁氧化鋅奈米線電極,在相似長度下(約6.5 m),改善電池效率由純氧化鋅奈米線陣列的0.492%提升至0.834%。