化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar Cells
    (Wiley-VCH Verlag, 2013-06-24) Y.-C. Wang; D.-Y. Wang; Y.-T. Jiang; H.-A. Chen; Chia-Chun Chen; K.-C. Ho; - H.-L. Chou; Chun-Wei Chen
    Calligraphic counter electrodes: An important photovoltaic application using FeS2 nanocrystal (NC) pyrite ink to fabricate a counter electrode as an alternative to Pt in dye-sensitized solar cells is demonstrated. FeS2 NC ink exhibits excellent electrochemical catalytic activity and remarkable electrochemical stability. ITO=indium-doped tin oxide.
  • Item
    Solution-Processable Pyrite FeS2 Nanocrystals for the Fabrication of Heterojunction Photodiodes with Visible to NIR Photodetection
    (Wiley-VCH Verlag, 2012-07-03) D.-Y. Wang; Y.-T. Jiang; C.-C. Lin; S.-S. Li; Y.T. Wang; Chia-Chun Chen; C.-W. Chen
    A heterojunction photodiode with NIR photoresponse using solution processable pyrite FeS2 nanocrystal ink is demonstrated which has the advantages of earth-abundance and non-toxicity. The device consists of a FeS2 nanocrystal (NC) thin film sandwiched with semiconducting metal oxides with a structure of ITO/ZnO/FeS2 NC/MoO3/Au, which exhibits an excellent photoresponse with a spectral response extended to NIR wavelengths of up to 1150 nm and a high photocurrent/dark current ratio of up to 8000 at -1 V under AM1.5 illumination (100 mW cm−2).
  • Item
    Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS(2) nanocrystals embedded in poly(3-hexylthiophene)
    (IOP Publishing, 2011-07-27) C.-W. Lin; D.-Y. Wang; Y. Tai; Y.-T. Jiang; M.-C. Chen; Chia-Chun Chen; Y.-J. Yang; Y.-F. Chen
    Electrical bistable behaviour was demonstrated in memory devices based on n-type FeS2 nanocrystals (NCs) embedded in a p-type poly(3-hexylthiophene) (P3HT) matrix. An organic/inorganic hybrid non-volatile memory device with a type-II band alignment, fabricated by a spin-coating process, exhibited electrical bistable characteristics. The bistable behaviour of carrier transport can be well described through the space-charge-limited current model. The small amount of FeS2 NCs in this device serve as an excellent charge trapping medium arising from the type-II band alignment between FeS2 and P3HT. Our study suggests a new way to integrate non-volatile memory with other devices such as transistor or photovoltaic since the presented FeS2/P3HT offers a type-II band alignment.
  • Item
    Enhanced Infrared Light Harvesting of Inorganic Nanocrystal Photovoltaic and Photodetector on Graphene Electrode
    (American Institute of Physics, 2011-06-27) C.-C. Lin; D.-Y. Wang; K.-H. Tu; Y.-T. Jiang; M.-H. Hsieh; Chia-Chun Chen; C.-W. Chen
    We demonstrate an enhancement of infrared light harvesting of inorganic PbSnanocrystalphotovoltaic and photodetectordevices based on the transparent grapheneelectrode. Due to high infrared transparency of the grapheneelectrode with respect to indium tin oxide (ITO), the infrared photoresponse of the graphene-based device is superior to the ITO-based counterpart, in spite of a higher sheet resistance of the grapheneelectrode. The outstanding infrared characteristics of the devices based on the grapheneelectrode make it a promising candidate for infrared optoelectronic applications such as solar cells, imaging and sensing, or optical communication.
  • Item
    Efficient Light Harvesting by Photon Downconversion and Light Trapping in Hybrid ZnS Nanoparticles/Si Nanotips Solar Cells
    (American Chemical Society, 2010-10-26) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Chen; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. Chen
    A hybrid colloidal ZnS nanoparticles/Si nanotips p−n active layer has been demonstrated to have promising potential for efficient solar spectrum utilization in crystalline silicon-based solar cells. The hybrid solar cell shows an enhancement of 20% in the short-circuit current and approximately 10% in power conversion efficiency compared to its counterpart without integrating ZnS nanoparticles. The enhancement has been investigated by external quantum efficiency, photoluminescence excitation spectrum, photoluminescence, and reflectance to distinct the role of ZnS quantum dots for light harvesting. It is concluded that ZnS nanoparticles not only act as frequency downconversion centers in the ultraviolet region but also serve as antireflection coating for light trapping in the measured spectral regime. Our approach is ready to be extended to many other material systems for the creation of highly efficient photovoltaic devices.
  • Item
    Efficient light harvesting and carrier transport in PbS quantum dots/silicon nanotips heterojunctions
    (IOP Publishing, 2011-03-02) C.-Y. Huang; D.-Y. Wang; C.-H. Wang; Y.-T. Wang; Y.-T. Jiang; Y.-J. Yang; Chia-Chun Chen; Y.-F. Chen
    Light harvesting from nanocomposites consisting of silicon (Si) nanotips and PbS quantum dots (QDs) has been investigated. We show that Si nanotips provide direct carrier transport paths, additional interfacial area and light trapping. We observe that there is a dramatic enhancement in short-circuit current (from 9.34 to 14.17 mA cm−2) with nanotips structure than that of the bulk Si wafer. In addition, with an additional electron blocking layer, the photovoltaic performance can be further increased. The nanocomposites consisting of QDs and Si nanotips therefore open a promising route for efficient light harvesting from visible to infrared with improved power conversion efficiency.