化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    原位光導技術量測二硫化鉬極致薄膜材料於二氧化碳光催化還原反應的應用
    (2021) 柯尚緯; Ke, Shawn-Wei
    本篇論文主要探討使用熱蒸鍍與化學氣相成沉積法合成的三奈米半導體薄膜材料二硫化鉬(MoS2)在光催化二氧化碳還原的反應機制,而我們也藉由薄膜材料對環境感測優異的特性,製作光感測裝置並且使用四極式半導體探針體測量儀去觀測光電導在光催化反應中變化,來幫助我們更深入反應中電子傳遞機制。在我們所測量光導數據主要所做的差異化實驗有環境變因和波長變因去設計實驗,而在光催化方面我們是採用氣體氣相層析去量測與計算產量,再使用長時間光導測量去比較在不同氣體環境下的數據差異,可以得知在二氧化碳和水氣得環境下確實能使光電流下降,即代表載子被氣體分子吸收還原為可循環利用的有機分子燃料。而在波長上主要是紫外光有最佳的光響應,甚至造成了特殊的巨大持久性光導(GPPC) 性質,藉由上述兩者的數據結合,我們能推導出光激發載子與反應氣體間的電子傳遞機制。為了解釋電子傳遞的行為,從能帶彎曲的兩種模式表面電子聚集(SEA)和表面電子消耗(SED),並且參考了光電導的載子活期和光電流大小等特性,推論出表面電子聚集為本薄膜材料提出一個合理和完善的解釋。本研究為了解電子傳遞效應如何影響材料的催化效率,主要的方法即是生成凡德瓦二維異質材料,藉由生長三奈米二硫化鉬薄膜於單層石墨烯來達到材料之間優異的原子級接觸和特殊傳遞特性,更藉此影響和增進光催化二氧化碳還原產率。
  • Item
    新穎化學氣相沉積石墨烯轉印技術之開發
    (2012) 黃奕盛; I-Sheng Huang
    石墨烯為碳原子彼此以sp2混成軌域組成單原子層厚度的二維材料,具備了良好的透光度、化學穩定性、低片電阻、理想的功函數、高機械強度及低成本。近年來,在製備及轉印石墨烯方法有很多種,主要都是針對如何增進石墨烯的品質及改善轉印造成的缺陷,使其在提升光電元件上之應用性。此研究主要致力於單層石墨烯轉印技術上的改善,因石墨烯轉印至基板的優劣通常直接影響了光電元件的表現。 本實驗使用化學氣相沉積法,以銅箔當金屬催化層,成長高品質的單層石墨烯,我們研發出二種新型轉印方法有別於傳統之轉印方法,有效的改善CVD石墨烯在矽基板及塑膠基板上的品質。第一種:我們結合了最常見的PMMA法及Roll-to-roll法,此方法不但保有PMMA法轉印後石墨烯的高品質、低電阻的優點,同時還能利用Roll-to-roll法免除石墨烯與基板在水溶液中撈取的問題,此單層石墨烯在塑膠基板上的片電阻約為400Ω⁄sq,2D band半高寬約為36cm-1,I_G⁄I_2D ≅0.62。第二種:因為目前各種轉印方法,都需憑藉有機物的支撐,才能將石墨烯從銅箔上轉印至基板,而此方法則不需任何有機物的支撐,我們單純以物理吸附的現象,利用靜電吸引力的方式,將銅箔上的石墨烯以靜電力吸附至基板上進行轉印,毋殘留有機物,達到一個高品質且乾淨的石墨烯,此單層石墨烯在塑膠基板上的片電阻約為500Ω⁄sq,2D band半高寬約為35cm-1,I_G⁄I_2D ≅0.66。預期這兩種簡單、快速的石墨烯轉印方式,能有效地提升光電元件效益。
  • Item
    以NFSI有機分子摻雜化學氣相沉積法石墨烯並提升石墨烯/矽-蕭基接面太陽能電池轉換效率
    (2012) 曾紀洋; Chi-Yang Tseng
    石墨烯,為碳碳原子之間以sp2鍵鍵結而成的二維結構材料,因為具有許多特殊的物理性質,像是高載子遷移率、高熱傳導性、優異的機械性質及光學性質,因此可望應用在電晶體、透明導電電極、偵測器以及光電元件上。 近年來,許多研究致力於改善以及探索石墨烯的電性,並可望開發於光電元件上的應用。在本篇論文中,我們以化學摻雜的方式摻雜NFSI((C6H5SO2)2NF)分子於石墨烯上。NSFI摻雜後的石墨烯,其電阻值明顯大幅的下降並且還維持著良好的穿透度。在拉曼圖譜中確認NFSI對石墨烯摻雜上的變化,摻雜前後比較,發現G band和2D band偏移分別為1581至 1586 cm-1、2631 至2643cm-1。更進一步了解摻雜前後電性上的改變,從石墨烯電晶體以及霍爾效應量測電性的結果,我們發現石墨烯電洞的載子濃度大幅度上升,證明了NFSI摻雜之石墨烯為P型態摻雜,而載子遷移率的下降主要是因為雜質散射所造成。 此外,我們結合了一層NFSI-石墨烯/n-矽形成蕭基接面太陽能電池做為探討。在這樣的結構元件下,以AM1.5照射所得到的轉換效率可以達到3.56%,與未摻雜前的1.74%提升了2倍左右。接著以電流—電壓、電容—電壓關係量測元件特性,可以發現效率的提升以及開路電壓的增高,主要是因為NFSI提高了石墨烯的載子濃度以及提升了元件系統中的內建電位。
  • Item
    石墨烯與金奈米粒子疊層結構材料應用於基質輔助雷射脫附游離質譜儀之分析
    (2012) 邱瑀辰
    本篇研究是發展出一種新穎疊層結構材料應用在表面基質輔助雷射脫附質譜儀之分析,一方面藉由近年來廣泛受到注目石墨烯材料,利用其多苯環以及片狀材料所導致的良好傳熱及導電性,搭配常見傳統的偵測小分子基質-金奈米粒子利用旋度塗覆的方式,形成多層的疊層結構,藉由兩者都為良好的基質特性,進一步達到增加分析物游離的效果以及增強分析物的分析訊號並提高其靈敏度,由於材料疊層結構的穩定性使得分析物在測量過程中有良好再現性。 儀器條件方面是採正離子模式,折返式偵測器下進行偵測,樣品濃度皆為10-4M,點樣的方法皆取1.5μL點樣,在材料鑑定方面我們可從SEM看出材料剖面疊層結構厚度大約是200nm,另外再從紫外光吸收儀也可以看出同時具有金奈米粒子與石墨烯的吸收波長。 在比較2、5、10、15、25不同層數材料基質的質譜圖中,在訊號強度及背景訊號干擾的考量下, 以10層的結構較適合最為進一步條件的探討,析物方面,我們選擇了不同種類的分析物如醣類分子、多種胺基酸以及胜肽進行偵測,結果而本研究所開發的疊層材料能夠有效偵測溶於不同分析物,且此新穎疊層結構改善與金有特殊之鍵結之化合物之分析訊號。
  • Item
    硼氮共摻雜石墨烯之電子元件
    (2014) 李佩玲
    石墨烯是一種二維材料,其厚度只有一層碳原子厚。是目前最薄且最硬的奈米材料,由於其具有獨特的結構與優異的物理特性。可廣泛運用在各個領域上,但因單層石墨烯能帶隙接近於零,故無法應用於半導體產業。開啟能帶結構,單層石墨烯即可以應用於半導體元件。開啟石墨烯能帶結構之方法有量子限制效應、對稱破壞與化學摻雜等。本論文使用熱化學氣相沉積法,藉由改變摻雜源BH3NH3之預熱溫度以及甲烷流量,控制硼和氮在石墨烯中之摻雜濃度,可得不同B-N摻雜濃度與能隙之摻雜石墨烯(boron carbon nitride, BNC)。藉由霍爾效應觀察不同濃度氮硼摻雜石墨烯的電性變化以及利用不同轉印方式和不同測量面積大小,光電子能譜儀、拉曼、探討BNC之鍵結與特性分析。
  • Item
    利用靜電轉印石墨烯作為透明導電電極並應用於有機發光二極體上
    (2013) 王端瑋
    自從在2004年時,石墨烯這種用碳原子以蜂巢狀排列而成二維材料被發現以後,由於其在理論上具備各種優越的物理性質,包含對光良好的穿透度、具有相當高的導電度、只有單原子層的厚度、優異的機械強度以及非常穩定的化學性質。因此,近幾年石墨烯已經試圖被大量應用在各種光電元件上,並且被視為取代目前廣泛使用的透明導電電極氧化銦錫(ITO,Indium tin oxide)最有潛力的物質之一。為了可以有效地將石墨烯應用在光電元件上,各種石墨烯的製備和轉印的方法不斷地被研發以及改良,但是一直到現在為止,石墨烯仍然沒有辦法有效的取代氧化銦錫(ITO)主要是因為石墨烯在轉印的過程中常常會產生一些無法避免的破壞以及有機殘留物的影響使得整體元件的表現並不如我們所預期。因此,我們在這個研究裡致力於開發出一種良好的轉印方法並且實際應用於有機發光二極體上(OLED, Organic Light-Emitting Diode)。 因為現行最常被用來轉印石墨烯的兩種方法:PMMA法和Roll-to-Roll法都必須靠著有機物的輔助才能夠將石墨烯轉印至我們的目標基板上,而我們研發出以單純以靜電力吸引的方式,將石墨烯從銅箔上轉移到我們的目標基板上。整個過程中不需要任何有機物的支撐因此也就不會有任何殘留物的產生,進而得到一個乾淨且高品質的石墨烯。此單層的石墨烯電阻值大約為300"Ω/sq" ,I_D/I_G≅0.05。 最後,我們將轉印至目標基板的石墨烯作為透明導電電極,並製作成有機發光二極體,以Alq3作為發光層的螢光有機發光二極體,我們預期利用這種乾淨轉印的方式所得到的高品質的石墨烯能夠有效地提升光電元件的效益。
  • Item
    燃料轉換效率於多元金屬催化劑之理論計算研究:硫毒化反應與甲醇氧化反應
    (2019) 陳昭穎; Chern, Zhao-Ying
    本篇論文以第一性原理計算幾個不同的異質催化反應在燃料電池的應用,包括 (1) 第二章討論硫毒化與移除於BaZrO3陽極的反應, (2) 第三章討論甲醇裂解反應於鉑—石墨烯之性質, (3) 第四章討論甲醇氧化反應 (MOR) 與甲酸氧化反應 (FAOR) 於鉑三元合金 (PtRuM, M=Fe, Ti) 陽極之性質。 第二章節中,計算結果發現燃料中含有的H2S(g)會毒害催化劑表面,此為強放熱反應,然而,移除硫化物為吸熱反應。表示硫毒化為一自發性發生且難避免的反應。研究發現水的加入可以幫助硫化物的移除。除此之外,我們還列出了反應熱與自由能以及電池電動勢之間的關聯性,以此探討電池偏壓以及H2S(g)與H2O(g)的氣體分壓對於硫化反應的影響。第三章討論以石墨烯為擔體之鉑催化劑對於甲醇吸附的性質差異。根據石墨烯與鉑的結合角度可分為0o和30o角,研究結果發現甲醇可吸附在鉑團簇上,但對於鉑層吸附較弱。此種差異可以應用於材料的保護層。第四章討論配位基效應與雙官能基效應對於MOR與FAOR於鉑釕三元合金 (PtRuM, M=Fe, Ti) 上造成的反應差異。鐵的加入可使周圍電子離域化,而鈦的加入可使電子更局域化。總體來看,PtRuTi可以幫助MOR與FAOR更容易進行反應,而鐵的加入幫助不大。