化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 兩性共聚物: 合成與應用(2022) 劉幸怡; Liu, Xin-Yi本論文研究分為三個主體,這三個主題分別為共聚物分散劑合成應用於氧化石墨烯與環氧樹脂複合材料熱傳性、兩性離子分散劑的合成及應用於砂漿中氧化石墨烯的分散、兩性離子水膠/矽藻土複合材料的合成及應用於砂漿中。第一個主題為合成一種共聚物Poly (GMA-co-Eu),選用甲基丙烯酸缩水甘油酯(Glycidyl methacrylate)和烯丙基甲氧基苯酚(Eugenol)為單體,偶氮二異丁腈(AIBN)為起始劑,經自由基反應利用不同單體比例和起始劑濃度聚合成共聚物分散劑P(GMA/Eu)。經由FTIR及NMR光譜分析確認其化學結構。利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和RAMAN光譜確認。接著探討溶劑、共聚物添加量等對於氧化石墨烯/環氧樹脂(GO/Epoxy)複合材料的熱傳性影響影響。利用SEM觀察氧化石墨烯在環氧樹脂裡的分散性。比較添加不同PGE和PVP,TX100對於氧化石墨烯/環氧樹脂複合材料的熱傳性。實驗結果顯示利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和Raman光譜確認。在合成的5個PGE中,以PGE3 (GMA/Eu=2, Mn=6.7×103)對GO的分散效果最好。在含6% PGE、10wt% GOA的GO/Epoxy複合材料K值為3.32 W/mK,相較於沒有添加分散劑含10wt% GOA的複合材料K值(=2.62 W/mK)提升了26%;在含6% PGE、20wt% GOA的GO/Epoxy複合材料K值為5.02 W/mK,相較於沒有添加分散劑含20wt% GOA的複合材料K值(=2.93 W/mK)提升了71%。添加PVP和TX100,也能促進GO的分散而提升所得GO/Epoxy複合材料的K值。添加相同劑量的5個PGE PGE所得的複合材料的K值都高於添加PVP者,顯示PGE對GO的分散效果優於PVP。第二個主題為合成一種兩性離子型羧酸型共聚物:丙烯醯胺-(1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)) Poly(AM-co-CDP) (PAC),首先使用馬來酸酐和N,N-二甲基-1,3-丙二胺,及氯醋酸鈉反應得到單體1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)(CDP),硫酸銨(APS)為起始劑,與丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物Poly(AM-co-CDP)。使用FTIR和1H-NMR光譜鑑定其結構,利用GPC測定其分子量,將PAC加入含氧化石墨烯的人工孔隙溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗,探討PAC對於人工孔隙溶液中GO的分散效果。將PAC/GO添加在水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度並與商用氧化石墨烯GOB和商用分散劑PC比較。實驗結果顯示: 經由沉降體積、粒徑分布、界達電位和黏度實驗觀察,隨著PAC添加量的增加,GO人工孔隙溶液的黏度漸減,溶液中GO沉降速率減緩、GO粒徑變小、GO界達電位的負值變大,顯示此共聚物確實能促進GO的分散。在合成的PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。相較於商用型羧酸分散劑PC,PAC有更佳的GO分散效果。隨著PAC添加量的增加,含GO的砂漿抗壓/抗彎強度亦增。添加10wt% PAC23、0.05 wt% GOA的28天齡期砂漿試體,有最大的抗壓和抗彎強度、分別為37.2 MPa和7.5 MPa,比未添加氧化石墨烯或分散劑的對照組試體提升了32.3%和111%。相較於PC,PAC更能提升砂漿的機械性質。在合成的數種PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。第三個主題為製備兩種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽藻土為單體,製備PAC和PACD兩種兩性離子型的吸水性水膠,使用FTIR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽藻土含量對於水膠在各種水溶液下吸水率的影響。實驗評估將PACD複合水膠加到水泥砂漿中,作為自養護劑是否合宜,探討水膠和矽藻土量,對於水泥漿中對於水泥砂漿壓強度、內部濕度、乾縮量的影響。實驗結果顯示,PACD複合水膠,當AM/CDP= 4,APS=0.5 mle%,MBA=0.5 mole%,矽藻土15 wt%時的反應條件下,在純水中和孔隙溶液中的最大吸水率分別為362.4 g/g和115.4 g/g。添加矽藻土水膠的砂漿試體的內部濕度高於未添加矽藻土水膠的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的內部濕度隨著添加的PACD水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體內部濕度為最高,其內部濕度到第22天方開始從100%往下降,到第28天的內部濕度仍有78.6%。添加矽藻土的砂漿試體的抗壓強度高於未添加矽藻土的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的抗壓強度隨著添加的PACD複合水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的MD23砂漿試體抗壓強度為最高,在28天齡期的抗壓強度為39.8MPa,比未添加矽藻土的的PAC水膠的試體抗壓強度(34.5 MPa)提升了15%;比無添加水膠的試體抗壓強度(33.1 MPa)提升了20%。添加矽藻土的砂漿試體的乾縮量低於未添加矽藻土的砂漿試體,後者則低於未添加水膠的砂漿試體。砂漿試體的乾縮量隨著添加的PACD水膠所含DE比例增加呈現先下降、達最低值後再上升的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體乾縮量為最低。Item 超薄二維碲化亞銅/石墨烯之生長與其自發電應力感測之應用(2022) 姚松甫; Yao, Song-Fu人類科技日新月異,卻也加劇了對石化燃料的依賴,發展出環境友善的綠色能源勢在必行。碲化亞銅是一種極具展望的熱電材料,但是關於二維碲化亞銅的文獻仍為數不多。在此,我們利用固態化學反應生長碲化亞銅薄膜於石墨烯上,石墨烯作為凡得瓦外延生長的模板以及擴散阻擋層,最終展現出優異的熱電與機電性能。上述材料特性可以達成自發電應力感測器,藉由橫向的溫度差異產生電能,提供快速且耐用的應力感測,有希望成為攜帶式的自主健康檢測器,為生活帶來諸多便利性,展現了二維碲化亞銅與石墨烯異質結構的潛力。Item 原位光導技術量測二硫化鉬極致薄膜材料於二氧化碳光催化還原反應的應用(2021) 柯尚緯; Ke, Shawn-Wei本篇論文主要探討使用熱蒸鍍與化學氣相成沉積法合成的三奈米半導體薄膜材料二硫化鉬(MoS2)在光催化二氧化碳還原的反應機制,而我們也藉由薄膜材料對環境感測優異的特性,製作光感測裝置並且使用四極式半導體探針體測量儀去觀測光電導在光催化反應中變化,來幫助我們更深入反應中電子傳遞機制。在我們所測量光導數據主要所做的差異化實驗有環境變因和波長變因去設計實驗,而在光催化方面我們是採用氣體氣相層析去量測與計算產量,再使用長時間光導測量去比較在不同氣體環境下的數據差異,可以得知在二氧化碳和水氣得環境下確實能使光電流下降,即代表載子被氣體分子吸收還原為可循環利用的有機分子燃料。而在波長上主要是紫外光有最佳的光響應,甚至造成了特殊的巨大持久性光導(GPPC) 性質,藉由上述兩者的數據結合,我們能推導出光激發載子與反應氣體間的電子傳遞機制。為了解釋電子傳遞的行為,從能帶彎曲的兩種模式表面電子聚集(SEA)和表面電子消耗(SED),並且參考了光電導的載子活期和光電流大小等特性,推論出表面電子聚集為本薄膜材料提出一個合理和完善的解釋。本研究為了解電子傳遞效應如何影響材料的催化效率,主要的方法即是生成凡德瓦二維異質材料,藉由生長三奈米二硫化鉬薄膜於單層石墨烯來達到材料之間優異的原子級接觸和特殊傳遞特性,更藉此影響和增進光催化二氧化碳還原產率。Item 硫酸對氧化石墨烯結構的影響(2012) 柴世濂本研究分為(一)不同的硫酸濃度對GO 進行反應與(二)稀硫酸濃 度0.6M 對GO 進行不同的反應時間。 利用粉末X 光繞射儀、拉曼散射儀、X 光光電子能譜儀和四點 探針等儀器鑑定,對其材料進行分析。結構上,根據拉曼散射的D band 和G band 之比值可以得知材料的石墨化程度。隨著硫酸濃度增加至 18M,ID/IG 比值會從2.17 下降至1.46,表示脫水還原形成石墨烯。 然而,在稀硫酸0.6M 反應1.5 小時,GO 結構會進行開環,ID/IG 比值 從2.17 上升至2.89,表面缺陷增加;24 小時則會進行部份脫水還原, ID/IG 比值從2.17 下降至1.71。電性上,隨著硫酸濃度的提升,導電 率從1.67×10-3S/m 提升至1.40×102S/m,由於高濃度的硫酸對GO 進 行脫水反應,使原本GO 表面的含氧官能基部分脫去,導電性因此變 高;然而0.6M 稀硫酸對GO 反應時間的增加,導電率從1.67×10-3S/m 提升至5.73×10-2S/m。 此研究是硫酸對GO 的時間和濃度影響,因此結果可提供以環 保的方式製備石墨烯以及GO 的結構修飾,作為重要的參考價值。Item 新穎化學氣相沉積石墨烯轉印技術之開發(2012) 黃奕盛; I-Sheng Huang石墨烯為碳原子彼此以sp2混成軌域組成單原子層厚度的二維材料,具備了良好的透光度、化學穩定性、低片電阻、理想的功函數、高機械強度及低成本。近年來,在製備及轉印石墨烯方法有很多種,主要都是針對如何增進石墨烯的品質及改善轉印造成的缺陷,使其在提升光電元件上之應用性。此研究主要致力於單層石墨烯轉印技術上的改善,因石墨烯轉印至基板的優劣通常直接影響了光電元件的表現。 本實驗使用化學氣相沉積法,以銅箔當金屬催化層,成長高品質的單層石墨烯,我們研發出二種新型轉印方法有別於傳統之轉印方法,有效的改善CVD石墨烯在矽基板及塑膠基板上的品質。第一種:我們結合了最常見的PMMA法及Roll-to-roll法,此方法不但保有PMMA法轉印後石墨烯的高品質、低電阻的優點,同時還能利用Roll-to-roll法免除石墨烯與基板在水溶液中撈取的問題,此單層石墨烯在塑膠基板上的片電阻約為400Ω⁄sq,2D band半高寬約為36cm-1,I_G⁄I_2D ≅0.62。第二種:因為目前各種轉印方法,都需憑藉有機物的支撐,才能將石墨烯從銅箔上轉印至基板,而此方法則不需任何有機物的支撐,我們單純以物理吸附的現象,利用靜電吸引力的方式,將銅箔上的石墨烯以靜電力吸附至基板上進行轉印,毋殘留有機物,達到一個高品質且乾淨的石墨烯,此單層石墨烯在塑膠基板上的片電阻約為500Ω⁄sq,2D band半高寬約為35cm-1,I_G⁄I_2D ≅0.66。預期這兩種簡單、快速的石墨烯轉印方式,能有效地提升光電元件效益。Item 以NFSI有機分子摻雜化學氣相沉積法石墨烯並提升石墨烯/矽-蕭基接面太陽能電池轉換效率(2012) 曾紀洋; Chi-Yang Tseng石墨烯,為碳碳原子之間以sp2鍵鍵結而成的二維結構材料,因為具有許多特殊的物理性質,像是高載子遷移率、高熱傳導性、優異的機械性質及光學性質,因此可望應用在電晶體、透明導電電極、偵測器以及光電元件上。 近年來,許多研究致力於改善以及探索石墨烯的電性,並可望開發於光電元件上的應用。在本篇論文中,我們以化學摻雜的方式摻雜NFSI((C6H5SO2)2NF)分子於石墨烯上。NSFI摻雜後的石墨烯,其電阻值明顯大幅的下降並且還維持著良好的穿透度。在拉曼圖譜中確認NFSI對石墨烯摻雜上的變化,摻雜前後比較,發現G band和2D band偏移分別為1581至 1586 cm-1、2631 至2643cm-1。更進一步了解摻雜前後電性上的改變,從石墨烯電晶體以及霍爾效應量測電性的結果,我們發現石墨烯電洞的載子濃度大幅度上升,證明了NFSI摻雜之石墨烯為P型態摻雜,而載子遷移率的下降主要是因為雜質散射所造成。 此外,我們結合了一層NFSI-石墨烯/n-矽形成蕭基接面太陽能電池做為探討。在這樣的結構元件下,以AM1.5照射所得到的轉換效率可以達到3.56%,與未摻雜前的1.74%提升了2倍左右。接著以電流—電壓、電容—電壓關係量測元件特性,可以發現效率的提升以及開路電壓的增高,主要是因為NFSI提高了石墨烯的載子濃度以及提升了元件系統中的內建電位。Item 石墨烯與金奈米粒子疊層結構材料應用於基質輔助雷射脫附游離質譜儀之分析(2012) 邱瑀辰本篇研究是發展出一種新穎疊層結構材料應用在表面基質輔助雷射脫附質譜儀之分析,一方面藉由近年來廣泛受到注目石墨烯材料,利用其多苯環以及片狀材料所導致的良好傳熱及導電性,搭配常見傳統的偵測小分子基質-金奈米粒子利用旋度塗覆的方式,形成多層的疊層結構,藉由兩者都為良好的基質特性,進一步達到增加分析物游離的效果以及增強分析物的分析訊號並提高其靈敏度,由於材料疊層結構的穩定性使得分析物在測量過程中有良好再現性。 儀器條件方面是採正離子模式,折返式偵測器下進行偵測,樣品濃度皆為10-4M,點樣的方法皆取1.5μL點樣,在材料鑑定方面我們可從SEM看出材料剖面疊層結構厚度大約是200nm,另外再從紫外光吸收儀也可以看出同時具有金奈米粒子與石墨烯的吸收波長。 在比較2、5、10、15、25不同層數材料基質的質譜圖中,在訊號強度及背景訊號干擾的考量下, 以10層的結構較適合最為進一步條件的探討,析物方面,我們選擇了不同種類的分析物如醣類分子、多種胺基酸以及胜肽進行偵測,結果而本研究所開發的疊層材料能夠有效偵測溶於不同分析物,且此新穎疊層結構改善與金有特殊之鍵結之化合物之分析訊號。Item 以化學氣相沉積法製備石墨烯及其官能化(2011) 黃耀德; Yao-De Huang石墨烯是以碳原子組成單層原子厚度的二維材料,具有良好的機械強度、化學穩定性、電子遷移率、高透光度等等的新穎材料,具有相當好的應用前景,例如薄膜場效電晶體(thin film field effect transistor)、薄膜透明電極(thin film transparent electrode)等等,故我們便開始著手研究石墨烯科學。 製備石墨烯的方法非常多種,本論文採用常見的化學氣相沉積法(Chmeical Vapor Deposition ,CVD),以銅箔(Cu foil)作為金屬催化劑,使石墨烯薄膜成功穩定的成長在金屬基板上。為了將石墨烯轉印到適當之基材上,並能夠大量並快速準確地與太陽能電池、場效電晶體等光電元件製程相容,我們利用兩種方式:(一) PMMA法,以PMMA抓取石墨烯並以酸性溶液蝕刻基板,以人力轉印的技術使銅箔上的石墨烯能夠輕易地轉印到任何基板上。(二) 護貝機式熱脫膠,以膠膜黏取石墨烯,蝕刻後直接貼在基板上,通過護貝機熱滾軸完成脫膠。 最後為了光電在元件應用性的改進,希望能夠(一)進一步降低石墨烯的電阻值,(二)致力於製備LWF或HWF的石墨烯。我們分別使用兩種有機小分子,以化學摻雜法(chemical doping)成功的得到LWF與HWF的石墨烯,並偵測其石墨烯所對應的功函數4.277與4.799且獲得比原始石墨烯小超過50%的電阻值,希望能有更廣泛的應用。Item 石墨烯與氧化石墨烯的製備與鑑定(2011) 韋峻文; Chun Wen Wei第一部分: 我們利用X光光電子能譜與粉末X光繞射光譜觀察石墨材料在氧化製程中的變化,過錳酸鉀會破壞石墨結晶中的雙鍵而產生含氧的官能基,當使用超聲波震盪時,含氧官能基彼此會產生靜電斥力,而達到石墨結構層與層之間的分離。從XPS圖譜可以看出,碳的訊號會因為氧化造成導電度下降而往高能量飄移,氧化所造成的官能基變化也可以從碳的XPS圖譜得知。根據文獻,碳的訊號會由碳材料及3種鍵結在碳材料上的含氧官能基所貢獻,分別有不同的能量。而X光粉末繞射圖譜也可發現石墨(002)晶面的訊號會隨氧化時間而往低角度飄移。分析以上兩種光譜,我們可以知道碳材料的結構變化與氧化程度。 由上述實驗所得到的結果,我們結合氧化時間為6小時、超聲波震盪1小時的兩道製程條件製備氧化石墨烯。並利用原子力顯微鏡等儀器做鑑定,證明我們所設計的製程條件可以製備出低層數、分散均勻(在水中)的氧化石墨烯。 第二部分: 我們進一步以有機修飾或是還原劑還原的方式改變氧化石墨烯的特性,並以儀器做鑑定。從各種鑑定結果我們發現,石墨烯氧化物的特性會因為官能基改變或是還原後而有不同的性質。Item 硼氮共摻雜石墨烯之電子元件(2014) 李佩玲石墨烯是一種二維材料,其厚度只有一層碳原子厚。是目前最薄且最硬的奈米材料,由於其具有獨特的結構與優異的物理特性。可廣泛運用在各個領域上,但因單層石墨烯能帶隙接近於零,故無法應用於半導體產業。開啟能帶結構,單層石墨烯即可以應用於半導體元件。開啟石墨烯能帶結構之方法有量子限制效應、對稱破壞與化學摻雜等。本論文使用熱化學氣相沉積法,藉由改變摻雜源BH3NH3之預熱溫度以及甲烷流量,控制硼和氮在石墨烯中之摻雜濃度,可得不同B-N摻雜濃度與能隙之摻雜石墨烯(boron carbon nitride, BNC)。藉由霍爾效應觀察不同濃度氮硼摻雜石墨烯的電性變化以及利用不同轉印方式和不同測量面積大小,光電子能譜儀、拉曼、探討BNC之鍵結與特性分析。