化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    多核含碲之第六族過渡金屬(鉬、鎢)羰基團簇物及含十六族 (硫、硒、碲) 三鐵羰基汞銅陰陽離子聚合物之合成、結構、化性及半導體性質探討
    (2021) 徐以諾; Hsu, Enoch
    1. Te-M−CO 系統 (M = Mo, W) 系統之研究由 Te 粉末 、M(CO)6 (M = Mo, W) 和Et4NBr在KOH/MeOH/MeCN 溶液中以不同比例下反應可合成一系列新穎多核含碲之第六族過渡金屬羰基團簇物,籠狀 [Et4N]4[Te7Mo6(CO)20] (1)、籃型 [Et4N]4[Te6Mo6(CO)15] (2a-Mo(CO)3) 與碗型化合物 [Et4N]4[Te6W5(CO)12] (2b)。 此系列化合物具高氧化性質,當化合物 1 與氧化試劑 I2 以莫耳比 1 : 1反應可合成車輪型結構 [Et4N]2[Te8Mo6(CO)18] (6),而化合物 2b 與I2 以莫耳比 1 : 1反應則得到生成一新W‒W 金屬鍵的化合物 [Et4N]2[Te6W5(CO)12] (3b)。進一步將化合物 2a-Mo(CO)3 及2b與 I2 以莫耳比 1 : 1.5反應則可生成共頂點三立方烷型結構 (vertex-fused tricubane clusters) 之擴核產物 [Et4N]2[Te12M10(CO)24] (M = Mo, 4a; W, 4b)。若將化合物 2a-Mo(CO)3 及 2b 與過量之溫和氧化試劑 [Fe(C5H5)2][PF6] 反應則可生成共頂點三立方烷型結構,且有一 M‒M 金屬鍵生成之中性團簇物 [Te12M10(CO)24] (M = Mo, 5a; W, 5b)。將化合物 5a(5b) 及 3b 加入還原試劑Na/Ph2CO可逆反應回化合物4a(4b) 及 2b。此外,從電化學實驗結果觀察到此系列團簇物隨著氧化至後續產物,還原峰往陽極偏移之趨勢。由液態吸收光譜觀察到此系列化合物隨著氧化至後續產物,實驗光譜呈現紅移現象。2. E‒Fe-Hg-Cu 系統 (E = S, Se, Te) 系統之研究 將聚合物[{Cu(MeCN)2(dpy)}{BF4}]n (1) 與團簇物 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a]; Se, [Et4N]2[2b]; Te, [Et4N]2[2c])以液態輔助研磨 (liquid-assisted grinding) 方式進行陰離子交換反應,可成功得到一維聚合物[{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (3) 、[{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (5) 和混合一維及二維骨幹之陰陽離子聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, 4-Se; Te, 4-Te)。且透過X-ray 結構解析得知一系列陰陽離子聚合物皆具有許多弱作用力存在於陽離子骨架和陰離子簇中,如 C‒H···π, C‒H···O氫鍵, 和 O···O 作用力。除此之外,由固態反射式紫外/可見光光譜測量的一系列聚合物的能階 (energy gap) 發現陰陽離子結合之聚合物能隙 (1.36‒1.55 eV) 遠低於起始物[{Cu(MeCN)2(dpy)}{BF4}]n 能隙 (2.46 eV),進一步透過錠片電導率 (Electrical Conductivity) 探討此系列聚合物之導電特性,發現聚合物 4-Se, 4-Te 電導率 (1.26‒5.39×10-6 S∙cm–1) 遠低於起始物 1 (4.02×10-7 S∙cm–1)。然而,聚合物3, 4-Se, 4-Te 和 5之晶體顯示較錠片更低之電導率數值 (1.48‒5.34×10-7 S∙cm-1) 。配合晶體晶面解析 (crystal index) 探討聚合物電子傳遞之方向,發現聚合物 4-Se, 4-Te 晶體的最長邊與b軸重合,顯示聚合物 4-Se, 4-Te皆以1D/2D 的陽離子結構以及陽離子之間C‒H···π 作用力為橋梁進行電子傳遞。而聚合物 5 晶體的最長邊與a軸重合,顯示聚合物 5 應是沿著陰離子 [Et4N]2[2a] 和分子間 C-H…O 氫鍵弱作用力作為橋樑進行電子傳遞。這些弱作用力可以有效地促進電子傳輸,從而增強了此系列聚合物在固態下的穩定性和半導體行為。
  • Item
    含十六族 (硫、硒、碲) 與過渡金屬 (錳、鐵、銅、汞) 團簇化合物之反應性、電化學、電子吸收光譜及理論計算
    (2014) 傅怡瑄
    1. S/Mn/CO 系統之研究 利用 S powder 與 Mn2(CO)10 以莫耳比 2:1於 1 M 或 7 M 之 KOH/MeOH 溶液中反應,可分別得到 [S2Mn3(CO)9]─ (1) 及 [HS2Mn3(CO)9]2─ (2)。若將莫耳比改為 5:1 於 4 M 之鹼性溶液中,則生成多硫之錳錯合物 [Mn3(CO)9(-S2)2(-HS)]2─ (3)。此外,團簇物 1 可於 鹼性溶液中與 CO 或 S powder 反應轉換成錯合物 2 及 3。而團簇物 2 也可藉由加入 [Cu(MeCN)4]BF4 進行氧化反應轉換回團簇物 1 並伴隨氫氣生成,或於高溫下與 S powder 反應可形成錯合物 3。反之,錯合物 3 轉換回 2 則需於鹼性條件下外加 Mn2(CO)10 而成。有趣的是,若團簇物 2與 S powder 的反應改置於室溫下,可意外得到另一錯合物 [HMn3(CO)9(-S2)2(-S)]2─ (4)。錯合物 3 及 4 為同分異構物,且動力學產物 4 可經由加熱轉換成熱力學產物 3。除此之外,錯合物 3 也可與不同氧化試劑 (例如:MeI、CH2Cl2、Mn(CO)5Br、[Cu(MeCN)4]BF4) 反應,生成氧化物 [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5)、[{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6)、[S5Mn4(CO)12]2─ (7) 及 [S4Mn3(CO)10]─ (8)。上述化合物之生成、轉換及電化學亦藉由理論計算進一步驗證。 2. E/Fe/CO (E = S, Se, Te) 系統之研究 將一維含 Cu 聚合物 [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) 與含十六族混合 Hg 與 Fe 羰基團簇物 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]) 以莫耳比 2: 1 混合,利用液體輔助機械研磨方式 (liquid-assisted grinding, LAG) 分別可得到一維聚合物 [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (4)及 [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (5c);於相似條件下,當若將聚合物 1 與 [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) 或 [Et4N]2[2c] 及 dpy 以莫耳比 2:1:0.5 進行研磨,可生成混合一維及二維骨幹之陰陽離子聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, Te)。此外,固態電子吸收光譜顯示 3、4、5b 及 5c 皆具有半導體性質,其能隙落在 1.36 ~ 1.67 eV 之間。再者,此系列聚合物之生成及光學性質進一步藉由理論計算佐證。 關鍵字: 團簇物、硫、硒、碲、錳、鐵、銅、汞
  • Item
    對苯二腈、雙磷烷、含氮異環碳烯橋接之EFe3Cu2 (E = S, Se, Te) 錯合物: 合成、轉換、半導性以及催化
    (2015) 林建男; Lin, Chien-Nan
    1. S/Fe/Cu/Dppx 系統之研究 透過蒸氣揮發與機械式研磨的化學方法,具有雙磷配基dppe連結著SFe3Cu2的團簇物 [{(m3-S)Fe3(CO)9}Cu2(dppe)] 與其一維聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n 間存在著固態可逆轉換關係。其中聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n能隙為1.69 eV,具有半導體特性。 2. Se, Te/Fe/Cu/p-DCB 系統之研究 當固態反應物 [EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基1,4-dicyanobenzene (p-DCB) 分別以1:1 以及 1:1.5的比例混合並加入幾滴THF進行研磨,可合成兩種以EFe3(CO)9Cu2為基底THF引入且取代基p-DCB分別以單股和混合單股與雙股橋接的型式所形成之一維聚合物[SeFe3(CO)9Cu2(p-DCB)1.5•0.5THF]n (1a-THF) 與[TeFe3(CO)9Cu2(p-DCB)•THF]n (2b-THF)。X光繞射分析顯示聚合物1a-THF其上雙股p-DCB相鄰苯環間呈現平行位移排列並有著分子內pi···pi作用力且1a-THF或2b-THF其晶格溶劑THF上的氧原子可和鄰近p-DCB上的氫原子相互作用形成微弱之C─H…O氫鍵。當研磨的溶劑替換為CH2Cl2,只有得到以TeFe3(CO)9Cu2為基底,混合單股與雙股p-DCB橋接的聚合物 [TeFe3(CO)9Cu2(p-DCB)1.5]n (1b)。反之,一旦於60度加熱並抽真空,1a-THF上的晶格溶劑THF可被移除並生成聚合物 [SeFe3(CO)9Cu2(p-DCB)1.5]n (1a)。1a和1b為isomorphous且其晶體結構同呈緊密堆積。有趣地,當[EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基p-DCB以1:1.5比例混合並加入幾滴CH2Cl2/toluene (v/v = 1/1) 進行研磨,可合成出以EFe3(CO)9Cu2為基底甲苯引入且取代基p-DCB分別以混合單股與雙股橋接的型式所連接之一維聚合物[EFe3(CO)9Cu2(p-DCB)1.5•0.5toluene]n (E = Se, 1a-toluene; Te, 1b-toluene),其中甲苯的苯環與鄰近p-DCB上傾斜苯環的氫原子形成顯著的C─H···pi作用力。此外,藉由加入溶劑THF、CH2Cl2、 CH2Cl2/toluene 或是添加額外的 p-DCB 取代基進行溶劑輔助研磨,聚合物1a、1a-THF和 1a-toluene間抑或是 1b-toluene、2b-THF和 1b間可進行可逆地固態結構轉換,伴隨著晶格溶劑的吸附與脫附、晶體位移堆積以及晶體至晶體間的膨脹與收縮現象。此外,導電度的丈量呈現出聚合物1a(1b)、1a(1b)-toluene和 2b-THF具有半導體行為 (直流電導率, 10−3−10−2 Ω−1cm−1; 能隙, 1.42−1.50 eV),其導電度會受到pi···pi或是C─H···O作用力調控,此現象進一步使用DFT理論計算加以解釋。 3. Te/Fe/Cu/NHC 系統之研究 一新型TeFe3(CO)9併入雙銅含氮異環碳烯 (N-heterocyclic carbene) 錯合物可直接藉由一鍋化反應製備。透過引入具推電子與立障的團簇陰離子基團 [TeFe3(CO)9]2− 及含氮異環碳烯作為取代基,這些以雙銅為基底的錯合物對同耦合催化硼酸反應表現出顯著的催化活性,即少量銅承載量 (0.5 or 1.0 mol%) 以及高產率 (直達98%)。
  • Item
    十六族 (硫、硒、碲) 鐵銅羰基與含磷、氮有機試劑及含氮異環碳烯 (NHC) 之團簇化合物的 合成、化性、物性與催化反應探討
    (2016) 王致欽; Wang, Chih-Chin
    E‒Fe3‒Cu2‒dppxn‒solvent (E = S, Se, Te; dppx = dppm, dppe; n = 1, 2; solvent = THF, acetone, MeCN) 系統之研究 利用溶劑輔助研磨之方法以 [EFe3(CO)9Cu2(MeCN)2] (E = S, Se, Te) 加入diphenylphosphino methane (dppm) 反應,得 [EFe3(CO)9Cu2(dppm)MeCN] (E = S, 1a-MeCN; Se, 1b-MeCN; Te, 1c-MeCN),再由脫去 MeCN 配位得 [EFe3(CO)9Cu2(dppm)] (E = Se, 1b; Te, 1c)。進一步將 1a-MeCN‒1c-MeCN 進行溶劑配位轉換成 [EFe3(CO)9Cu2(dppm)THF] 或 [EFe3(CO)9Cu2(dppm)acetone] (E = S, 1a-THF, 1a-acetone; Se, 1b-THF, 1b-acetone),可成功脫去 THF 得化合物 [SFe3(CO)9Cu2(dppm)] (1a)。再將 1a-MeCN、1b-MeCN、1a‒1c 外加 dppm、4,4’-bipyridine (dpy) 或 1,2-di(4-pyridyl)ethylene (dpee),可得產物 [EFe3(CO)9Cu2(dppm)2MeCN] (E = S, 2a; Se, 2b)、[EFe3(CO)9Cu2(dppm)2] (E = S, 3a; Se, 3b; Te, 3c)、[{SeFe3(CO)9Cu2(dppm)}2(dpy)] (4) 及 [{SeFe3(CO)9Cu2(dppm)}2(dpee)] (5),並釐清其間之轉換關係。 此外,利用溶劑輔助研磨之方式以 [EFe3(CO)9Cu2(MeCN)2] (E = S, Se, Te) 並加入 diphenylphosphino ethane (dppe),可得 [EFe3(CO)9Cu2(dppe)] (E = Se, 6b; Te, 6c) 和 [{(4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n (7),並可將 7 轉換成 [SFe3(CO)9Cu2(dppe)] (6a)。再將 6a‒6c 與 [Et4N]2[EFe3(CO)9] (E = S, Se, Te) 反應,可得 dppe 橋接的化合物 [Et4N]2[{EFe3(CO)9Cu}2(dppe)] (E = S, 8a; Se, 8b; Te, 8c);也可以 8b 及 8c 於外加 [Cu(MeCN)4][BF4] 和 dppe 下,進行逆反應得到化合物 6b 與 6c。藉由測量固態反射光譜 (Solid-UV) 探討 E‒Fe3‒Cu2‒dppxn‒solvent (E = S, Se, Te; dppx = dppm, dppe; n = 1, 2; solvent = THF, acetone, MeCN) 系列化合物之能隙大小並搭配固態堆疊進行分析,得知此系列化合物皆具半導體性質,其能隙範圍 (1.35 eV‒1.73 eV),且固態堆疊之維度越高其能隙越低。 E‒Fe‒Cu‒NHC (E = Se, Te) 系統之研究 將起始物 [EFe3(CO)9Cu2(MeCN)2] (E = Se, 1a; Te, 1b) 與咪唑鹽類 (Imidazole salts) 1,3-dimethylimidazolium iodide (Me2Im•HI)、1,3-dimethyl- benzimidazolium iodide (Me2BenzIm•HI)、1,3-diisopropylbenzimidazolium iodide (iPr2BenzIm•HI) 和 4,5-dichloro-1,3-dimethylimdazolium iodide (4,5-Cl2Me2Im•HI) 和 tBuOK 於 THF 溶劑下反應,可得一系列主族鐵銅氮異環碳烯化合物 [EFe3(CO)9Cu2(Me2Im)2] (E = Se, 2a; Te, 2b), [EFe3(CO)9Cu2(Me2benzIm)2] (E = Se, 3a; Te, 3b), [EFe3(CO)9Cu2- (iPr2BenzIm)2] (E = Se, 4a; Te, 4b) 和 [EFe3(CO)9Cu2(4,5-dichloro-Me2Im)2] (E = Se, 5a; Te, 5b)。化合物 1a(b)‒5a(b) 皆以 EFe3(CO)9 為結構主體中心,而 Cu 以 Cu2L2 或 di-CuL 型式 (E = Se, Te; L = Me2Im, Me2BenzIm, iPr2BenzIm, 和 4,5-Cl2Me2Im) 對主體結構進行配位。 將含 Cu (I) 之化合物 1a(b)‒5a(b) 做為 4-bromophenylboronic acid 同偶合反應催化劑,可得E‒Fe‒Cu‒NHC (E = Se, Te) 系列催化劑的最佳催化條件,並根據產率 (Yield) 及催化效率 (Turnover frequency,TOF) 得知含 Te 系列之催化劑效能比 Se 系列為佳。
  • Item
    Main Group Element (S and Bi)-Containing Metal Carbonyl Complexes: Synthesis, Transformation, Reactivity, and Applications
    (2018) 于家齊; Yu, Chia-Chi
    1.硫/錳系統 當硫粉以及 Mn2(CO)10 以一鍋化方式於 KOH 混合甲醇溶劑加熱回流反應時,可得一罕見的硫–錳含氫配子之羰基團簇物 [(μ-H)Mn3(CO)9(μ3-S)2]2– (1)。由 X-ray 單晶結構鑑定可知化合物 1 係由 S2Mn3 四角錐組成,且其氫配子橋接於一 Mn–Mn 鍵上。有趣的是,藉由質子–氫配子交互方式,1 可與已發表的雙三角錐化合物 [Mn3(CO)9(μ3-S)2]– 進行可逆結構轉換,其中包含著有趣的氫氣產生過程。進一步,當硫粉以及 Mn2(CO)10 以一鍋化方式於莫耳比為 5: 8 的條件下,可生成含硫醇之化合物 [Mn3(CO)9(μ-HS)(μ3-S2)2]2− (3)。由變溫 1H NMR 可知錯合物 3 中的氫配子具有有趣的流動現象。再者,當 3 與 TEMPO 反應時,可得去質子之硫−硫鍵結雙聚物 [{Mn3(CO)9(μ3-S2)(μ3-S2)}2(μ4-S)]4− (9)。由十八電子規則可知,化合物 9 具有 108 個價電子,滿足電子計算。但其卻具有令人意想不到的磁性表現,此表現可藉由固態 EPR 光譜證實。最重要的是,9 可於 UV 燈照下進行氫氣活化,逆反應回化合物 3。最後,此系列含硫之錳羰基錯合物之性質、結構轉換以及氫配子流動特性皆藉由 DFT 理論計算之輔佐進行系統性的討論。 2.鉍/鉻系統 成功合成出過去未知的 4 中心–6π 共振平面三角形錯合物 [Bi{Cr(CO)5}3]– (1),並藉由 XAS、XPS 以及 DFT 理論計算得知其中心鉍原子為正 3 價。由化合物 1 結構得知,此鉍原子在鍵結上可扮演雙重的提供者與接受者的角色。與過往鉍三價原子之弱路易士酸性不同,化合物 1 中的鉍三價原子為極強路易士酸,其可吸引極弱路易士鹼氟負離子並產生鍵結、展現溶劑化顯色性質、進行有趣的醚化過程以及具有令人訝異的半導體特性。化合物 1 之能隙為 1.02 eV,主要歸因於其於固態下存在著 Bi···O 和 O···O 之弱作用力。此外,Fe4(CO)4 加成之錯合物 [{Fe(CO)4}Bi{Cr(CO)5}3]3– (1-Fe) 可進行選擇性的去金屬化反應,生成等電子數之 BiCr3 錯合物 1 以及 BiCr2Fe 錯合物 [Bi{Cr(CO)5}2{Fe(CO)4}]– (2)。此結果提供了一個新穎的方式來設計一系列異核金屬引入之鉍/鉻平面三角形錯合物。