機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    飛秒雷射製作可撓性聚醯亞胺異質結構元件於氣體檢測之研究
    (2022) 葉力維; Yeh, Li-Wei
    本研究是利用超快飛秒雷射(Ultrafast femtosecond laser)之超短脈衝(Ultrashortpulses)的特性,在聚醯亞胺(Polyimide, PI)薄膜基材,製作指叉狀電極結構(Interdigitated electrode structures)元件於氣體檢測(Gas detection),該超快雷射製程具較小熱影響區(Heat-affected zone),以能進行可撓性基材之結構製作。為增加此元件感測之靈敏度,本研究亦利用水熱法製成氧化鋅(Zinc oxide)奈米線結構(Nanowires),在飛秒雷射製程製作之石墨烯PI電極元件上,以成型新穎複合結構元件於氣體檢測,以增加感測響應值。本研究顯示該可撓性元件可避免受力而導致斷裂、破壞的現象,且當彎曲曲率半徑小於6 mm響應值仍屬穩定(誤差值±3%)。元件設計的微型加熱器方面顯示,在一氧化碳(Carbon monoxide, CO)氣體從室溫到85.6°C可縮短恢復時間為86.2sec;甲烷(Methane, CH4)氣體則從室溫到約86.8°C可縮短恢復時間為117.2 sec。因此,在氣體感測元件方面顯示,一氧化碳和甲烷氣體檢測於200濃度200 ppm,其元件在甲烷與一氧化碳氣之電性響應值會分別為20.7 %和120.8 %。藉此,本研究證明氧化鋅/石墨烯可撓性微性加熱元件於一氧化碳和甲烷氣體濃度具有良好的恢復性,分別在1000 sec和1600 sec可恢復至初始電阻值,且該元件靈敏度則在加熱升溫環境會別為0.6728與0.0434為最佳。透過此研究,將可提供飛秒雷射製程於氣體檢測元件之應用參考。 關鍵詞: 飛秒雷射、可撓性元件、石墨烯、奈米線、氣體檢測
  • Item
    利用超快雷射製程製備石墨烯結構元件應用氣體偵測之研究
    (2022) 周承穎; Chou, Cheng-Ying
    本研究旨在利用超快雷射(Ultrafast laser)製程技術於石墨烯薄膜 (Graphene thin films)上製作電極與結構元件(Devices),並將其應用於氣體偵測(Gas detection),透過超快雷射製程成型薄膜表面與結構,進行製程參數的建置與分析,以利評估後續透過超快雷射製程於偵測元件的可行性。在超快雷射製程技術開發中,本研究採用超快雷射中波長為532 nm的皮秒雷射源(Picosecond laser source),在較低的熱影響區(Low heat-affected zone)之製程機制條件下,以應用於薄膜結構元件上的製作。本研究利用超快雷射於石墨烯薄膜上製作間距2 mm的螺旋狀電極(Spiral electrode)與寬度和深度分別為22.43 m與12.48 m的指叉狀電極(Interdigitated electrode, IDE)元件,並且製作寬度和深度分別為25.81 m與15.24 m的微溝槽(Microgroove)結構元件。另一方面,本研究探討不同材料對氣體的偵測機制,包括石墨烯、氧化鋅奈米線(ZnO nanowires)以及還原氧化石墨烯(Reduced graphene oxide, rGO);其中,利用螺旋狀電極搭配無線傳感模組(Wireless module)進行氣體偵測。此外,本研究會搭配水熱法(Hydrothermal method)和電紡絲法(Electrospinning method)的方式,在微溝槽與指叉狀電極上製作奈米線(或奈米纖維),完成氣體偵測元件的研製。本研究結果顯示,利用超快雷射製程開發的氣體偵測元件,可實際應用在室溫下氣體偵測,包括偵測濃度5-150 ppm的一氧化碳(Carbon monoxide, CO),以及偵測50-400 ppm的一氧化氮(Nitric oxide, NO)。