機電工程學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/84

系所沿革

為迎合產業機電整合人才之需求,本校於民國 91年成立機電科技研究所,招收碩士班學生;隨後並於民國93年設立大學部,系所整合為「機電科技學系」,更於101學年度起招收博士班學生。103學年度本系更名為「機電工程學系」,本系所之發展方向與目標,係配合國家政策、產業需求與技術發展趨勢而制定。本系規劃專業領域包含「精密機械」及「光機電整合」 為兩大核心領域, 使學生不但學有專精,並具跨領域的知識,期能強化學生之應變能力,以適應多元變化的明日社會。

教學目標主要希望教導學生機電工程相關之基本原理與實務應用的專業知能,並訓練學生如何運用工具進行設計、執行、實作與驗證各項實驗,以培養解決機電工程上各種問題所需要的獨立思考與創新能力。

基於建立系統性的機電工程整合教學與研究目標,本系學士班及研究所之教育目標如下:

一、學士班

1.培育具備理論與實作能力之機電工程人才。

2.培育符合產業需求或教育專業之機電工程人才。

3.培育具備人文素養、專業倫理及終身學習能力之機電工程人才。

二、研究所

1.培育具備機電工程整合實務能力之專業工程師或研發人才。

2.培育機電工程相關研究創新與產業應用之專業工程師或研發人才。

3.培育具備人文素養、專業倫理及終身學習能力之專業工程師或研發人才。

News

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    奈米柱應用於燃料電池電極之技術開發
    (2006) 湯杜翔; Du-Hsiang Tang
    摘 要 直接甲醇燃料電池(DMFC)是未來令人期待的科技,目前的發展方向在於3C產品的應用(如筆記型電腦、手機)、攜帶式電源供應器等。然而,目前發展DMFC仍有幾項瓶頸仍待克服,例如提升電極觸媒催化效能、減少甲醇不必要的穿透現象,這些負面影響均使其輸出功率依舊無法滿足實際應用的需求。由文獻可知,為了製作高低不平電極,以提升直接甲醇燃料電池效率,皆需使用感應耦合電漿離子蝕刻技術。然而,由於這些設備高價格之缺點,使得學術界與中小型企業難以投入相關的研究。根據上述,本研究將結合「自組裝奈米球微影」、「光輔助電化學蝕刻」、「精密電鑄」技術,預期將可成為低成本,並且用以製作出完美且具大規模排列之奈米柱狀陣列結構,藉由電極接觸表面積之大量增加,來提高反應性,以應用於直接甲醇燃料電池電極之開發。 實驗的結果証實結合薄光阻格狀結構製作及震盪塗佈法的方式,可將奈米球規則地排列於矽基板上,以得到大面積且趨近完美排列的奈米球陣列。而在光輔助電化學蝕刻的實驗中,當使用1 V的蝕刻電壓與HF濃度2.5 wt%的蝕刻液,蝕刻30分鐘後,能夠產生高度約為7.4 m,直徑約為90 nm,而孔洞的深寬比可達到67:1之高深寬比孔洞。並且証實加大蝕刻電壓機制使蝕刻孔洞擴孔及適當RIE蝕刻時間,即可製作出柱體高度約為1.56 µm,直徑約為250 nm~300 nm,因此柱體的深寬比可達6.2:1~5.2之奈米柱狀陣列。目前直接甲醇燃料電池電極測試性能後,結果顯示平板電極其開路電壓、極限電流密度、最大功率密度分別為105 mV、0.319 mA/cm2、0.0093 mW/cm2,柱狀電極其最大開路電壓、極限電流密度、最大功率密度分別為280 mV、1.044 mA/cm2、0.0584 mW/cm2,本實驗發現柱狀電極所製作燃料電池之最大功率密度優於平板電極6.3倍,顯示蝕刻電壓增加所製作之柱狀電極結構可提升觸媒與燃料接觸之表面積,使其性能也隨之提升。 關鍵字:奈米柱,光輔助電化學蝕刻,精密電鑄,直接甲醇燃料電池電極。
  • Item
    多重技術整合之微機電式μDMFC開發與性能評估
    (2018) 傅品齊; Fu, Pin-Chi
    直接甲醇燃料電池(Direct methanol fuel cell, DMFC)具備能於低溫下工作、能量密度高、啟動速度快、燃料易取得、易攜帶、安全與穩定與低污染等優點,因此在未來有希望能取代鋰電池成為新一代的行動能源裝置。本研究以微機電系統(Micro-electromechanical system, MEMS)技術製作微型直接甲醇燃料電池(DMFC) ,並簡化元件結構與降低生產成本,以因應未來將其應用於行動電子產品之微小化需求。本研究主要以矽晶片作為燃料電池之基材,並整合「TMAH濕蝕刻技術」、「光輔助電化學蝕刻技術」、「PtRu二元金屬化鍍技術」以及「甲醇改質技術」,製作微流道搭配多孔矽(Porous silicon, PS),以及微流道搭配穿孔矽(Through silicon via, TSV) 擴散層結構之燃料電池電極板,並將其應用於微型直接甲醇燃料電池的製作。 本研究成功將PtRu二元金屬均勻複合於石墨烯與奈米碳管表面(PtRu/G-CNT),其Pt與Ru含量比分別為34.1 Wt.%與2.6 Wt.%,而在半電池表現,PtRu/G-CNT之氧化電流峰值為5 mA/cm2,是Pt/G-CNT以及PtRu/G的2.02倍與2.4倍。在電極組合部分,陽極與陰極分別使用多孔矽擴散層電極和穿孔矽擴散層電極的組合(PS+TSV),能得到最佳的電池性能表現,其最大開路電壓為0.4 V,與PS+PS相比增加約1.5倍,而與TSV+TSV相比增加約6.7倍。在添加界面活性劑改質甲醇燃料的評估試驗中得知,界面活性劑MA適於作為甲醇之濕潤劑,並能從添加濃度控制對甲醇氧化能力與濕潤性之影響,同時也能增加二氧化碳氣泡脫離,避免覆蓋觸媒層造成毒化,進而提升燃料電池之性能表現。在添加界面活性劑MA量為0.1 %時,其最大功率密度為0.336 mW/cm2與最大開路電壓為0.48 V,相較於未添加界面活性劑MA分別提升了1.4倍與1.2倍,說明加入少量界面活性劑能促進甲醇藉由多孔矽擴散至觸媒層進行反應,但若加入過多界面活性劑將會影響甲醇氧化效率,因而造成電池性能的下降。