數學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/55

本系之研究目標為發展卓越研究群,教育目標為培養高深數學及數學教育研究人才與培育中學及大學之優良數學師資。 本系之發展,在大環境的配合下,有堅持,有反思,有開創。當本校因師資培育政策鬆綁,高唱師大轉型之時代脈絡下, 本系之發展方向已定,正邁開大步前進中。

一、提倡研究,以研究促進教學專業發展。

本系同仁的學術研究,最近幾年一直在進步中,整體而言,尚有很大的進步空間。倡導研究是本系未來發展的主軸, 然而提倡研究是否會扭曲本系傳統培育優良師資的功能呢?我們的想法是,不僅不會,研究並且還可以促進研究者的教學成長。

初任教師,不管任教中學或大學,前幾年的教學,最關注的往往是教材,關心設定的教材是否都講授了、學生成績是否理想; 教學經驗豐富之後,逐漸轉向關心教學,怎麼教學生才學得好;然後是關心學生,以學生為中心進行教學活動;最後對教育工作有獻身的承諾, 這是一般的教學專業發展歷程。

大學教師如何促進自我教學的專業成長?我們認為,只有靠學術研究,才能不斷拓展思想與觀念,才能廣化、深化知識,才能自然呈現對 知識文化的熱愛態度,才能掌握求知的方法,日益厚植自己的內涵。研究者這樣的氣質在教學時自然也會感染給學習者,當然就能做好教育的工作。 所以說,好的研究者不僅對教學品質相輔相成,應該也是好的教學者之必要條件。其實,很多數學教師都表白,他們的教學思維與教學行動, 主要是源自自己感受良好的數學學習經驗。研究者的教學對大學生學習數學所產生的潛移默化,應也會反映在這些未來師資的教學及終身學習上。

本系的發展理念是,教學者一定要靠不斷的學術研究,來促進自己教學的專業成長。我們希望培育的學生(大學及研究所)都能具有此認知, 自然系上同仁也要表現有此認知的行為。

二、繼續保持本系規劃完善、績效卓越的數學師資培育課程。

本系之中學數學師資培育課程,規劃相當周延,包括數學學習、數學教學與評量、數學解題、數學教材教法、教學實習,再輔以班級經營、 輔導原理與實務、教育社會學、教育心理學、數學史、數學與電腦等等專業素養科目,整體與一般大學數學系之科目並列,融合學習。 既符合我國社會之中學數學教學需求,又能配合國際數學教育的主流思潮之發展趨勢。近年來,本系畢業生,有意教職者,幾乎百分之百都能通過 各校的遴選而受聘。

三、整合大學數學課程與師資培育課程,相輔相成。

本系之課程規劃,既有廣度、深度兼顧的大學數學系課程,並開授電腦相關的實用課程,又有完善的師資培育課程,最重要的更輔以 數學文化素養的數學史、哲科目。大學部學生孕育教育素養的期間,長達四年,與速成的一兩年的教育學程品質不同;再者,高深數學的基礎初探, 四年期間,與日精進。站在大學教育是通博教育,而非職業教育的基調上,本系學生在四年期間,有充分的時間進行了解自我的秉賦、能力、情緒、 動機與人生目標而調整自己的生涯規劃,或鑽研高深數學,或獻身中學數學教育,或其他工作事業,基本上都具備了良好紮實的大學教育基礎。

本系在過去已培養相當多高深數學研究人才及眾多優秀中學數學教師之基礎上,宜自我肯定整合大學數學系課程與師資培育課程於一爐之 課程規劃方向,日後應提升大學教學品質,而非課程發展方向的轉變。

四、學術發展國際化 。

本系若干個別同仁的努力,已漸受國際學者肯定,陸續有學者到系訪問,駐系三個月或一個月,或一、兩星期者都有。促進國際學術交流的互訪, 不僅是教授,還有研究生,都是本系鼓勵的。

跨國的學術研究計畫,數學教育方面已在進行中。未來更應積極推動,延拓到其他領域的研究合作。

本系已有同仁在其相關領域的國際學術團體,作了相當的學術服務貢獻,例如舉辦國際學會的學術研討會,擔任國際委員等等。拓展這類國際學術服務, 有助本系學術發展國際化。務期在國際學術社群內,成為一個被認同的學術機構

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    APOS教學對七年級學生學習線型函數概念之影響
    (2013) 張 耀文
    本研究主要目的是以「線型函數」單元為主題,探討「APOS教學方式」與「傳統教學方式」兩種教學,對學生學習線型函數概念的影響。研究設計是採準實驗研究法。研究對象為台北市某國中七年級學生,分兩組為實驗組與對照組。實驗組進行APOS教學課程,對照組則進行傳統教學課程。 兩組的教學教材,皆為翰林版國民中學數學課本第二冊與習作為主。但APOS教學活動是以Asiala等人(1996)所建立的「概念層次」為架構,將課本與習作重新依概念層次編排而成;傳統教學是依照翰林版國民中學數學課本第二冊所呈現的內容順序進行。 研究依據Dubinsky(1991)所提出的概念發展層次:「動作」、「過程」、「物件」及「基模」,進行上述重組教材實驗教學,並設計線型函數測驗卷(後測及延後測),來安置學生在教學後與經過一段時間後(約莫一個月)的線型函數概念層次,以分析學生概念改變及保留情形。 本研究主要發現如下: 1.經過教學後,實驗組與對照組學生在後測的概念層次上以「百分比同質性檢定」未達顯著水準,但兩組在延後測時則得到 p^(**)=.041<.05,達到顯著水準。顯示接受APOS教學方式的學生概念保留的程度較傳統教學方式的學生高。 2.實驗組在三次測驗中,學生進階至「物件」層次且維持的人數較對照組多,而退階至「動作」的人數亦較對照組少,顯示APOS教學方式對學生概念提升與理解有所助益。 3.在三次測驗中,兩組在代數表徵與圖像表徵的延後測上,以「百分比同質性檢定」皆達到顯著水準;而表列表徵則在三次測驗中無顯著差異。顯示APOS 教學在函數的「代數表徵」與「圖像表徵」的概念保留上,有明顯助益。
  • Item
    動態鏈結多重表徵環境下高職學生學習二次不等式的成效之研究
    (2010) 林貞延
    數學學習需要透過外在表徵來建構與溝通抽象的數學概念。因此,要探索學生對數學概念的理解,可從其相對應的外在表徵運用策略進行結構性的分析。本研究之目的即為設計針對二次不等式的動態鏈結多重表徵學習環境,並探討在此環境下高職學生二次不等式之表徵整合能力。本研究依據數學本質結構與表徵系統兩個面向設計診斷性問卷與半結構式訪談,同時運用質化與量化兩種方法,分析70位高職二年級學生的解題表現與方式,探討學生對於二次不等式的表徵運用能力。研究結果顯示: 在二次不等式的先備知識測驗中,兩組學生的答對率以及解題策略並無顯著差異。學生對於二次函數的圖形與數值存在自變數與應變數混淆的錯誤概念。對於二次函數表徵的運用能力則明顯受限於程序法則的影響,在不同表徵形式的轉移上,只熟習於代數式轉移至表列、表列轉移至圖形、代數透過表列轉移至圖形三種轉移程序。 依據表徵理論設計整合二次不等式代數式、表列、圖形等多重表徵的二次不等式教學活動,將二次不等式分解為二次函數點集及其圖形、二次函數圖形與x軸交點、解二次不等式、二次不等式之正定性四個單元。並依據動態幾何學習理論,建立動態鏈結多重表徵的學習環境,比較分別在動態鏈結環境與傳統講述環境中的兩組學生,其二次不等式表徵能力的差異性。結果顯示兩組學生在表徵整合能力的比較上,實驗組學生表現較佳,且與對照組的差異達到顯著水準。亦即在解二次不等式的表徵策略運用上,實驗組學生解題策略的表徵形式較為靈活,較能整合多重表徵來解題;對照組的學生解題策略則較為僵化,傾向於使用純代數操作來解題。量化的結果兩組學生的解題策略差異達到顯著水準。 比較兩種解題表徵運用策略,以多重表徵策略解題者,答對率較高(98.6%),以純代數操作策略解題者,答對率較低(55.3%)。整體學生依二次不等式概念測驗得分分為高、中、低三組,三組學生解題策略具有顯著差異,得分愈高學生,愈傾向使用多重表徵策略解題。具備整合多重表徵能力的學生,解二次不等式的過程概念較為簡潔且完備;無法整合多重表徵的學生,解二次不等式的過程概念較複雜且不完備,並存在較多錯誤概念。 透過動態鏈結多重表徵學習環境的設計,學習者可經由適當的類化,使心智中的基模產生重組,進而產生知識結構的增長與強化,影響其解題表徵策略。因此依據本文研究結果,建議在高職課程二次不等式單元可設計動態鏈結多重表徵環境設計教學活動,以增強學生多重表徵整合之能力。
  • Item
    數量樣式教學對國中生學習函數概念之影響
    (2007) 黃齡慧
    摘 要 本研究主要是想探討透過有關數量樣式的教學對國中生學習函數概念的影響。我們將函數的多重表徵作為課程設計的架構,設計一份相關的教材,探討如何藉由具體可操作的數量樣式的教學,讓學生連結並轉換數量形的樣式(包含圖案樣式與數樣式),並在引入函數教學時,學生對於函數多重表徵(包含表格、函數圖形、公式、函數機器……等)的理解,並經由測試與訪談,探究學生作答的錯誤類型與迷思概念。 本研究的主要發現為: (一)就學生在課堂及訪談的表現來看,「尋找兩種變量之間對應關係」比「這些對應關係即為函數」要優;函數表徵之間的轉換大致良好,僅對於從圖形表徵轉換為對應關係表徵較不理想。對於從尋求數量樣式的關係過渡到建立函數概念的教學活動,學生表現較為活潑。 (二)就學生上台說明的表現來看,大都能說明自己所找到的規律,並檢驗圖案中對應的數量確實符合這個規律。 (三)讓學生思考並比較「直線圖形的斜率與截距(即x項係數以及常數項)」和公式之間的變化關係,即使不出現「斜率」與「截距」這兩個名詞,對於提升學生進行轉換圖形與公式這二種表徵之間的能力仍有所幫助。 (四)進行教學時,教師應加強學生透過幾何方面的觀點去求出線型函數的公式表徵 。 (五)在透過描點的過程中,學生發現對於斜率 時的兩直線,當a值變大會造成直線與x軸的夾角變大。 (六)從測驗結果來看,實驗班級的學生在對於找尋規律的能力優於對照兩班的學生,而對於與函數相關的題目,實驗班整體表現也兩對照班級稍好,但卻也沒有很明顯的差異。 (七)不管使用何種方式讓學生認識函數概念,學生都需要長時間去理解與吸收,而完整的函數概念絕非短時間可形成。 (八)對於『斜率』的概念,就學生的後測答題表現而言,學生似乎未能真的理解『斜率』正式定義所代表的意義,這可能是教學過程中學生並未能體會(縱坐標改變的量)÷(橫坐標改變的量)=(每往右一格,就上升幾格),故在教學活動中教師應特別提醒,甚至對於是否適合在國中階段放入與『斜率』相關的教學內容,仍是值得探討的課題。 此外根據研究結果加以探討並提出若干建議,以提供教師在教學上與未來研究者之參考。
  • Item
    橢圓概念教學影片不同的呈現方式對學生的學習成效與認知負荷感受之影響研究
    (2019) 莊濬豪; Chuang, Chun-Hao
      隨著科技的發展,網路上有大量的多媒體教學影片,數位學習(e-Learning)已逐漸成為重要的學習管道,綜觀過去的研究,多媒體學習認知理論與認知負荷理論廣泛應用於數位教材的設計上,然而教學者手勢與動畫在數位教材中所扮演的角色仍有待進一步探究,本研究以數學學科本質、科技特色、認知結構、研究工具這四個面向探討橢圓概念教學影片是否包含教學者手勢與/或動態繪圖對學生的學習成效與認知負荷感受的影響,並以學生特質的觀點進一步探討此影響是否因學生的學習準備度(高學習成就、低學習成就)或認知風格(視覺型、語文型、混和型)而有所不同。本研究採準實驗研究法,並由研究結果建立以下假說:一、教學者手勢對學習成效的影響與所學的內容或學生的學習準備度有關(如後測試題第3題、第4題)。二、動態繪圖有助於建立學生概念結構中的心智圖像,強化表徵之間的動態連結,並促進遷移題的表現(如後測試題第5-1題)。三、高學習成就的學生其認知負荷感受顯著低於低學習成就的學生。
  • Item
    國小五年級學童分數表徵教學之研究
    (台灣數學教育學會、國立臺灣師範大學數學系共同發行, 2007-06-??) 張熙明; 楊德清
    本研究之主要目的在探究國小五年級學童於教學前後分數表徵之迷思概念的改變情形。因此,本研究採便利取樣方式選取研究者任教之彰化縣某國小五年某班學生(26人)為樣本參與本研究。研究結果顯示:一、教學前、後的紙筆測驗成績經由SPSS之t檢定結果達顯著水準(α<.01),此顯示將多重表徵方式融入分數教學活動後,學生的分數表徵迷思概念有顯著的改變。二、受訪學生在「比較分數大小時,忽略單位量要一致」、「對分數詞意義的不瞭解」以及「等值分數的概念」等方面有長足的進步,顯示將表徵融入教學中的確有助於學生分數概念之學習。但是低程度學生分數概念仍不穩固,未來有待更多之研究以協助低程度學生之學習。
  • Item
    淺談數學寫作
    (台灣數學教育學會、國立臺灣師範大學數學系共同發行, 2005-03-??) 林姿飴; 楊德清
    伴隨孩童成長的過程中,傾聽孩童的想法是促進學習重要的一環,在數學領域中亦然。透過數學寫作,可讓每一位孩子藉由各種不同表徵方式(如語言、文字、符號、圖畫等)表達孩童本身的數學想法,同時教師亦可經由學童的數學寫作,瞭解學生的數學思維,進而澄清學生迷思概念,或作為修正教學或補救教學之用。本文欲從第一線投入教學工作的教師之觀點,看待數學寫作,並於實際推動數學寫作後,分析其優點,及提出相關建議。
  • Item
    應用數線表徵融入小二學生加減運算教學之成效
    (台灣數學教育學會、國立臺灣師範大學數學系共同發行, 2018-04-??) 楊晉民; 陳嘉皇
    本研究旨在探討小二學生於數線表徵的教學實驗下之加減運算和心智策略的表現,透過「二位數加減法概念」試卷的分析,了解數線表徵對學生學習加減法運算教學前後的效果,提供教師日後課程及教學的參考。藉由兩班學生在本研究之結果,以瞭解學生是否具備二位數加減知識與數線表徵實驗成效的關聯。有關二位數加減法概念測驗表現部分,進行描述性統計與等組t考驗比較分析;並根據學生在教學情境進行的活動內容及呈現之說明、解題策略與思考方式,採用質性分析方式加以詮釋。本研究發現參與實驗小二學生經數線表徵教學實驗後,其加減法概念測驗的表現,較教學實驗前為佳,且達到統計上的顯著差異;另外,研究結果顯示數線表徵教學確可強化學生運算策略與數線表徵之關係,有助教師掌握學生加減概念的發展。