物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    鎳/石墨烯在條紋狀銅基板上電化學與磁特性研究
    (2022) 謝銘杰; Xie, Ming-Jie
    本實驗主要用射頻濺鍍鎳在商用石墨烯/銅基板,並利用原子力顯微鏡、磁光科爾效應儀與循環伏安法,藉以研究鎳/石墨烯結構對薄膜磁特性及電化學電位磁控制的變化。研究中發現在石墨烯上成長鎳薄膜,受到形狀異向性影響,於縱向磁化會呈現出有面上二對稱的磁化難軸與磁化易軸,並利用原子力顯微鏡發現了石墨烯/銅樣品上呈現出有規律的刻痕,而隨著鎳厚度的增加,矯頑力也隨著變大,更容易於觀察。在電化學中循環伏安法,在電化學研究中已知不同條件的樣品在化學溶液有不同的氧化還原反應,故透過循環伏安法來進行鎳/石墨烯的研究是必要的,在電化學實驗中選用20 ~ 70 nm的鎳/石墨烯/銅樣品來進行電位磁控制,在實驗中溶液為10、100 mM KCl分別加入0.1 mM HCl溶液,因此要先從中找到了氯離子的吸附、退吸附電位、鎳/銅的氧化還原電位、氫氣的反應電位,並發現溶液濃度上升會使氧化還原電位上升,其電位利用能斯特方程式計算與實驗系統數據呈現高再現性。依據循環伏安法的實驗結果,會以濃度、電位、厚度的比較來做氯離子吸附退吸附對矯頑力的影響,並且選擇了僅有氯離子的吸退附電位區間進行比較,可以從數據發現濃度改變、電位調控、氯退吸附會影響其矯頑力的變化,並且會符合其薄膜厚度Neel wall與Bloch wall的變化趨勢。
  • Item
    以鉛為介面活性劑電鍍製備Ni/Cu(111)薄膜研究
    (2011) 曾鈺潔; Yu-Chieh Tseng
    本實驗主要以鉛作為介面活性劑,藉以改變鎳在銅(111)上的成長模式以及薄膜磁特性。實驗中以電化學方式電鍍薄膜,以銅(111)為工作電極、銀/氯化銀為參考電極、白金為相對電極,實驗都在室溫下進行。將銅(111)置於 1 mM HCl + 1 mM NiCl2 水溶液中,利用循環伏安法(CV) step by step 的掃描方式,可以找出鎳成對的吸附、剝離峰電位分別為 E = -950 mV(←)和E = -480 mV(→),藉由控制循環伏安法停留在鎳的吸附電位並改變停留時間,以在銅(111)上鍍上不同厚度的鎳。在滴加少量氯化鉛溶液後,因為鉛的沉積電位在鎳之前,故可以優先沉積在銅(111)上,並與隨後沉積的鎳交換位置,藉由介面活性劑的特性以達到改善鎳成長模式的機制。在電鍍薄膜後,透過掃描穿隧式顯微鏡(STM)觀察鎳鍍在銅上的形貌大致可區分為兩類,第一類是三維島狀成長,可能是鎳銅合金的形貌;第二類是成塊堆疊的形貌,經掃描剝除電位後,仍可看到底層較難剝除的特殊結構,此亦和鎳銅合金有關。配合循環伏安法中需要多次掃描鎳的剝除電位區段才能將鎳的訊號退除,和磁光柯爾效應儀(MOKE)中磁滯訊號變化不同的現象,證實有鎳銅合金的產生。而從磁光柯爾效應儀掃描出的磁滯曲線隨層數的變化中,可觀察到不論有無加鉛,鎳在銅上的沉積皆有磁性易軸由平行膜面轉變到垂直膜面,再回到平行膜面的方向—即自旋重新排列轉變(SRT)的現象發生。最後比較有無加鉛的差異:利用掃描穿隧式顯微鏡的掃描圖計算粗糙度值,加入鉛之後的粗糙度值明顯下降,表示表面趨於平整;而從磁滯曲線中計算矯頑場與方正度,數值也比未加入鉛時高。這些證據都顯示鉛確實具有介面活性劑的功效,能有效改善鎳在銅上的成長模式,同時使該薄膜展現較佳的磁特性。
  • Item
    鉛介面層對於電化學製備Ni/Cu(100)薄膜影響研究
    (2010) 伍安偉
    本實驗以鉛為介面活性劑並用電化學電鍍方式在單晶銅(100)電極上成長鎳薄膜,所使用的實驗方法有循環伏安法(Cyclic Voltammetry)、電化學磁光柯爾效應系統(EC-MOKE)、電化學掃描式電子穿隧顯微鏡(EC-STM)來研究單晶銅(100)上所成長鎳薄膜的磁特性與表面特性。 實驗使用銀當作電化學參考電極,此電極屬於pseudo-reference electrode,其電位利用能士特方程式計算與文獻參考比較結果,與標氫電極準電位差大約是+87~130 mV 之間。透過循環伏安法掃描結果:銅(100)在2mM HCl+2 mM NiCl + 0.15 mM PbCl2溶液中,得知鉛的UPD的吸附與退吸附反應分別發生在E= -550 mV(←)和E= -450 mV(→),鉛的沉積(bulkdeposition)與還原在E= -700 mV(←)和E= -600 mV(→)出現。鉛在溶液中主要是使用其界面活性劑的性質,功能在於改變金屬表面沉積方式,使鎳鍍在銅(100)上能從原本的3D島狀成長開始往2D的方向沉積。實驗選擇在-1200 mV電位下電鍍鎳,控制電鍍時間以製造不同鎳膜厚度,透過積分CV圖的鎳退吸附峰算出電荷量和已知電鍍面積(0.292 cm2)可分析沉積鎳的膜厚。電解液裡的氯離子會修飾銅(100)電極表面,透過STM掃描圖像可以觀察到銅(100)表面直角台階的特徵。 電鍍鎳/銅(100)磁性行為主要分成四部分結論:(1)在1.66 ML以下沒有磁性原因是電鍍鎳量很少又加上氫氣產生的效應。 (2)在2.40 ML~7.86 ML認為是磁異向能的轉換,易軸變成Polar方向,表示有垂直磁異向能出現,與UHV系統有相同的現象發生。 (3)在13.9 ML~31.6 ML之間的磁化易軸變成平行樣品表面,趨向塊材現象以形狀異向性為主要因素,表示鎳層越厚,磁化需要更大能量。 比較加入鉛前後磁滯曲線L-MOKE的方正度,加入鉛作為界面活性劑來成長鎳薄膜與沒有加入鉛的來做比較,相對於較低的層數(5ML以下),較厚的層數(13ML~ 30ML)經由量測磁滯曲線所得到的方正度較接近1。
  • Item
    以電化學方法製備之Ni/Cu(100)薄膜的磁性研究
    (2009) 王穎潔; Wang Ying-Chieh
    本實驗利用電化學電鍍方式在單晶銅(100)電極上成長鎳薄膜,同時使用循環伏安法(Cyclic Voltammetry)、電化學磁光柯爾效應系統(EC-MOKE)、電化學掃描式電子穿隧顯微鏡(EC-STM)來研究單晶銅(100)上所成長鎳薄膜的表面特性與磁特性。 實驗使用銀當作電化學參考電極,此電極屬於pseudo-reference electrode,其電位利用能士特方程式計算與文獻參考比較結果,與標準氫電極電位差大約是+87~130 mV 之間。經過多次實驗測試,在本實驗系統中數據呈現高再現性。以循環伏安法檢測,單晶銅(100)電極在1 mM HCl電解液中電化學過程,發現電流成對峰值:銅溶解與銅沉積,往陰極方向加大範圍掃描,-800 mV(vs Ag)開始有氫氣產生反應(質子還原:H++e-→1/2H2)出現。加入鎳的電解液1 mM HCl+1 mM NiCl2則出現另外一個成對峰值分別在-1200 mV與-400 mV,實驗數據顯現此對峰之間相關性甚大,推測是鎳的吸附(Ni2++2e-→Ni)與退吸附(Ni→Ni2++2e-)反應。選擇在-1200 mV電位下電鍍鎳,控制電鍍時間以製造不同鎳膜厚度,透過積分CV圖的鎳退吸附峰算出電荷量和已知電鍍面積(0.292 cm2)可分析沉積鎳的膜厚。電解液裡的氯離子會修飾銅(100)電極表面,透過STM掃描圖像可以觀察到銅(100)表面直角台階的特徵。 電鍍鎳/銅(100)磁性行為主要分成四部分結論:(1)在1.52 ML以下沒有磁性原因是電鍍鎳量很少又加上氫氣產生的效應。 (2)在2.47~7.05 ML認為是磁異向能的轉換,易軸變成Polar方向,表示有垂直磁異向能出現,與UHV系統有相同的現象發生。 (3)在13.4 ML~29.0 ML之間的磁化易軸變成平行樣品表面,趨向塊材現象以形狀異向性為主要因素。隨著厚度增加殘磁逐漸變大,因此越厚的鎳層需要更大能量才能磁化。 (4)鎳退吸附後In-situ量測L-MOKE還有磁性的現象是在13.4 ML以上才有,推測是電鍍厚度越厚,水溶液離子數變少,使得水溶液導電度不夠無法將鎳退吸附掉。
  • Item
    以電鍍方法成長Co/Pt(111)薄膜及其磁性研究
    (2015) 郭唯旭; Kuo, Wei-Hsu
    在研究中,使用電化學的方式在水溶液環境中成長Co薄膜在Pt(111)上,透過加入Pb與紫精酸形成完全不同的磁性異質介面,研究Co薄膜受到不同的介面異向能以及不同的量測電位對磁特性的影響,利用循環伏安法(cyclic voltammetry, CV)鑑定成分,並使用磁光柯爾效應(Magneto-optic Kerr effect, MOKE)進行磁特性的量測。 實驗中Co薄膜成長在Pt(111)上並不會形成合金亦不會形成磁性死層,在5 nm 以上時可以穩定存在,不與溶液中的各種離子起化學反應,並且在不同的量測電位可以發現矯頑力會受到電場影響而增強的現象。 在Co/Pt(111)上加入Pb的覆蓋層,發現矯頑力並無明顯變化,推測是Pb只吸附在薄膜上不與Co形成合金態,且並未影響介面結構,導致矯頑力不變。 加入紫精酸則可發現矯頑力受到介面異向能的改變而變化,然而飽和磁化量、殘磁以及方正度均沒有明顯的變化,在不同的電位量測紫精酸對矯頑力的影響,發現紫精酸隨著電位變化,因為各個不同的官能基受到電位影響的能力不同,產生了不同的吸附狀態,使得表面的電子分布不同進而讓表面的鈷原子間自旋或軌道的角動量耦合改變,這樣的現象可近似於表面磁矩間耦合的缺陷增強或減弱而使得矯頑力變化,而這樣的表面現象僅影響薄膜的表面,因此表面特性的貢獻比例會持續隨著膜厚下降,此研究結果發現在此系統中可以利用電位的不同來瞬間控制磁性薄膜的矯頑力變化,極富應用價值。
  • Item
    石墨烯插層對Co/Cu薄膜的磁特性影響研究
    (2016) 張育杰; Chang, Yu-Chien
    本研究在水溶液環境中利用電化學的方式成長Co薄膜在Cu(100)及graphene /Cu上並進行磁性量測,再加入紫精酸的異質介面,研究Co薄膜在不同的介面對磁特性的影響,其中使用循環伏安法量測其成分組成,並使用磁光柯爾效應進行磁性量測。發現5至20 nm的Co薄膜在Cu(100)及graphene/Cu表面上成長,隨著厚度上升皆表現出縱向方向為磁化易軸,接著進一步分析縱向的磁滯曲線可以得到其飽和磁化量、殘磁、方正度以及矯頑力。Co/Cu(100)於不同電位測量時,其飽和磁化量、殘磁、矯頑力並無明顯的變化,而Co/graphene/Cu上則在特定的厚度會產生雙磁滯曲線疊加的現象,並且隨著電位可以控制其磁特性,比較石墨烯插層對Co/Cu薄膜的矯頑力影響,發現在任何電位下Co/Cu(100)薄膜的矯頑力皆大於Co/graphene /Cu薄膜。而後在Co/Cu(100)上覆蓋紫精酸會使得較薄的Co膜其飽和磁化量與殘磁下降且矯頑力上升,但是至12 nm以上時便不受影響,然而Co/grap hene/Cu於不同電位測量時,覆蓋紫精酸並無明顯變化。此研究發現在紫精酸及石墨烯之異質介面對Co薄膜受電位控制時的磁特性有微小的變化,對於開發電控制磁性元件附有應用潛力。