物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    以電化學方法研究Co/Cu(111)薄膜結構與磁特性
    (2007) 魏淑宜
    摘要 本實驗是利用電鍍方式在單晶銅(111)電極上成長鈷薄膜,同時使用循環伏安法(Cyclic Voltammetry)、電化學掃描式電子穿隧顯微鏡(EC-STM)、電化學磁光柯爾效應系統(EC-MOKE)來研究單晶銅(111)上所成長鈷薄膜的表面特性與結構以及磁特性。 以循環伏安法檢測,單晶銅(111)電極在 1 mM HCl電解液中的電化學過程,我們發現典型的電流成對峰值:氯離子的吸附、退吸附峰分別在E = -325 mV和E = -600 mV (vs Ag/AgCl)。正常而言如果是在電流數量級較小的實驗(ex. Nano Ampere) 系統開始產生氫氣以後電流就會一路往下。因此在-650 mV 後有質子的還原2 H+ + 2e- → H2。而在 0 mV 的氧化還原電流分別代表銅的溶解及再沉積 Cu + 2 Cl- ↔ CuCl2- + e-,再將電解液換成1 mM CoCl2/1 mM HCl 會造成氯離子氧化還原峰值移動:E = -660 mV and E = -550 mV (vs Ag/AgCl)。 進行STM實驗時用鹽酸修飾電極表面,利用氯離子與銅電極間的化學鍵結將形成一高規則度的(√3  √3)R30°結構,其將降低銅電極的表面能量,氯離子對銅有很強的鍵結力,具有修飾銅(111)電極表面平台及台階的效用。當電位改變往負極方向循序漸進時,可以觀察到氯離子對銅(111)電極的溶解現象,氯離子與銅電極鍵結後,在銅電極表面上較不穩定的島狀物或缺陷處形成CuCl2-化合物,並將銅原子從電極表面拔除,隨時間的變化,CuCl2-化合物會在電極表面上較穩定的區域,重新將銅原子填回載體,這也是為何實驗進行前我們會在-100 mV ~ -500 mV左右掃CV 10~15分鐘,這樣可以得到穩定良好的銅(111)電極表面。隨著往更負電位前進我們可以觀測銅(111)電極表面有一溶解的情形,隨時間變化,由台階邊緣往平台方向逐漸溶解,所以台階會變成圓形波浪狀且有很高的銅移動性(mobility和UHV類似),相反地,當我們將電位再調回陽極方向更正的電位時會重回氯離子的形態,且電位愈正台階形狀和表面型態皆會趨於穩定。而台階高度在所有觀察電位皆是0.2-0.18 nm。而鈷經過長時間(約20分鐘)的沉積後,會形成單原子多層結構和UHV相似的是在鍍多層後,因為有grain boundary 的存在阻礙了在後續成長的薄膜期間鈷團的結合,所以不會形成一個均勻連續的薄膜表面,經由STM的觀察可以發現,鈷原子吸附在單晶銅(111)電極上,並沒有單層鈷原子的吸附(沒有發現UPD),鈷膜的成長模式是以鈷原子本身自己聚集形成島狀物的模式成長。 基本上隨著電鍍時間增加膜厚也有增長的趨勢,但是超過十分鐘後因為溶液中鈷的含量分佈不均勻,靠近電極表面的地方,鈷離子的濃度遠小於溶液中的濃度,會導致擴散(diffusion effect)行為,使得鈷離子由濃度高處往低處移動。因此擴散效應影響了鈷原子吸附至銅(111)電極表面導致鍍鈷的速度會隨著時間的增加而變慢,所以CV上沒有明顯變化。另外在此電位下停頓已有氫氣放出,所以停頓愈久氫氣愈多(樣品拿出後有看到氣泡),這也會影響鈷在銅上的鍍率。配合前面的CV和STM結果,我們可以確信鈷離子會於電位-850 mV開始沉積於單晶銅(111)電極上(Co2++2e-→Co),所以電位-850 mV的狀況下單晶銅(111)電極表面上所沉積的鈷膜經由EC-MOKE觀察出具有磁性現象。到目前為止我們只知道HC似乎是維持在一個範圍之內,但有略為上升的趨勢,配合STM圖像可看出表面結構沒有太大改變但是因為是三維成長所以表面的形態有變亂的跡象,不過MR卻是持續穩定增加。
  • Item
    以電鍍方法成長Co/Pt(111)薄膜及其磁性研究
    (2015) 郭唯旭; Kuo, Wei-Hsu
    在研究中,使用電化學的方式在水溶液環境中成長Co薄膜在Pt(111)上,透過加入Pb與紫精酸形成完全不同的磁性異質介面,研究Co薄膜受到不同的介面異向能以及不同的量測電位對磁特性的影響,利用循環伏安法(cyclic voltammetry, CV)鑑定成分,並使用磁光柯爾效應(Magneto-optic Kerr effect, MOKE)進行磁特性的量測。 實驗中Co薄膜成長在Pt(111)上並不會形成合金亦不會形成磁性死層,在5 nm 以上時可以穩定存在,不與溶液中的各種離子起化學反應,並且在不同的量測電位可以發現矯頑力會受到電場影響而增強的現象。 在Co/Pt(111)上加入Pb的覆蓋層,發現矯頑力並無明顯變化,推測是Pb只吸附在薄膜上不與Co形成合金態,且並未影響介面結構,導致矯頑力不變。 加入紫精酸則可發現矯頑力受到介面異向能的改變而變化,然而飽和磁化量、殘磁以及方正度均沒有明顯的變化,在不同的電位量測紫精酸對矯頑力的影響,發現紫精酸隨著電位變化,因為各個不同的官能基受到電位影響的能力不同,產生了不同的吸附狀態,使得表面的電子分布不同進而讓表面的鈷原子間自旋或軌道的角動量耦合改變,這樣的現象可近似於表面磁矩間耦合的缺陷增強或減弱而使得矯頑力變化,而這樣的表面現象僅影響薄膜的表面,因此表面特性的貢獻比例會持續隨著膜厚下降,此研究結果發現在此系統中可以利用電位的不同來瞬間控制磁性薄膜的矯頑力變化,極富應用價值。
  • Item
    石墨烯插層對Co/Cu薄膜的磁特性影響研究
    (2016) 張育杰; Chang, Yu-Chien
    本研究在水溶液環境中利用電化學的方式成長Co薄膜在Cu(100)及graphene /Cu上並進行磁性量測,再加入紫精酸的異質介面,研究Co薄膜在不同的介面對磁特性的影響,其中使用循環伏安法量測其成分組成,並使用磁光柯爾效應進行磁性量測。發現5至20 nm的Co薄膜在Cu(100)及graphene/Cu表面上成長,隨著厚度上升皆表現出縱向方向為磁化易軸,接著進一步分析縱向的磁滯曲線可以得到其飽和磁化量、殘磁、方正度以及矯頑力。Co/Cu(100)於不同電位測量時,其飽和磁化量、殘磁、矯頑力並無明顯的變化,而Co/graphene/Cu上則在特定的厚度會產生雙磁滯曲線疊加的現象,並且隨著電位可以控制其磁特性,比較石墨烯插層對Co/Cu薄膜的矯頑力影響,發現在任何電位下Co/Cu(100)薄膜的矯頑力皆大於Co/graphene /Cu薄膜。而後在Co/Cu(100)上覆蓋紫精酸會使得較薄的Co膜其飽和磁化量與殘磁下降且矯頑力上升,但是至12 nm以上時便不受影響,然而Co/grap hene/Cu於不同電位測量時,覆蓋紫精酸並無明顯變化。此研究發現在紫精酸及石墨烯之異質介面對Co薄膜受電位控制時的磁特性有微小的變化,對於開發電控制磁性元件附有應用潛力。