圖文傳播學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/83

歷史沿革

民國42年2月

政府遷台後為實施國家建設亟需技術人力,仍將初高中職校改制為單位行業教育,在美國國際合作總署之資助下,由當時的台灣省立師範學院設立工業教育學系,初設機工、木工、電工、圖文 (印刷) 工廠,聘請顧柏岩先生擔任系主任,自民國四十二年二月,開始招收第一屆新生,為培育印刷職業教育師資,不定額招收高職印刷科畢業學生,施以印刷師資專業教 育及工藝科「圖文工」師資之培育。

民國50年8月

工教系分別招收工職組及工藝組兩個班,工職組招收高工畢業生,專為培育工業職業學校師資,內有一組獨立招收印刷科畢業生一至三名,施以印刷學程專業教育,並為高中工藝科目培育圖文傳播科目之專業能力。

民國67年8月

工教系教學內容整合為:

機械職業教育組

電機、電子職業教育組

傳播設計教育組

其中圖文傳播定額招收學生五名,至民國八十四年增招至十五名。

民國84年

在許瀛鑑教授規劃,提出圖文傳播組獨立設系之申請,經教育部批准成立「圖文傳播教育學系」,隸屬教育學院,籌備於八十五年八月招生授業。 民國八十四年十月份,為預作「師資培育機構」之轉型,並配合本系培育「亞太媒體中心」之印刷出版媒體及影視傳播媒體工程人員政策下,國立台灣師範大學奉教育部令,本系更名為「圖文傳播技術學系」。

民國84年10月

為預作「師資培育機構」之轉型,並配合本系培育「亞太媒體中心」之印刷出版媒體及影視傳播媒體工程人員政策下,國立台灣師範大學奉教育部令,本系更名為「圖文傳播技術學系」。

民國85年8月

提供

四技二專聯招名額20名,錄取學生屬印刷出版科技組,授予工學士學位。

大學聯招名額20名,錄取學生為影像傳播科技組,授予工學士學位。

民國87年9月

教育部核定師大成立科技學院,本系由教育學院改隸科技學院;並再更名為圖文傳播學系,大學部修業年限為四至六年,至少應修完128學分。專業必修含 蓋印刷出版、影視傳播、電子傳播等領域。公費生尚須多修習26教育學分,畢業及獲得本科准教師資格 ,並在相關學校試教一年後取得教師資格。

民國88年7月

教育部核准籌備研究所碩士課程,並定於八十九年三月分印刷出版科技組與影像傳播科技組兩組招生,九月正式上課。研究所修業年限二至四年,應修完32學分,並選各組專業學程的必修課程才能撰寫學位論文,畢業獲頒工學碩士學位。

民國89年

千禧年為本系第一屆畢業生完成大學部學業,並為研究所首屆新生入學之雙喜年。

民國89年7月

教育部核准研究所碩士班招收「印刷出版科技」與「影像傳播科技」兩組學生。畢業後獲頒工學碩士學位。

民國94年

教育部核准開設「圖文傳播在職進修專班」。畢業後獲頒工學碩士學位。

現在

本系現有專任教師 10 人, 計教授 6 人;副教授 1 人;助理教授 2 人;講師 1 人。

學士班學生共計約 180 人。

碩士班學生約 176 人 (含碩士在職專班 103 人)。

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    應用資料探勘技術分析台灣特色小鎮之色彩意象
    (2019) 蘇育惟; Su, Yu-Wei
    根據過往研究指出,色彩具有傳達訊息的功能,甚至比文字更容易記憶。城市的色彩意象,多為大眾透過風景、建築、飲食、文化、特產等日常生活所及之事物,再經由學習和經驗,進而產生之色彩連結。因此,城市的色彩意象能表達城市的獨特性及內涵,其所帶來的後續相關應用也更為重要。但目前建立城市色彩意象的方法,多半來自實地田野調查,而後進行校色對比,或是請該城市的居民參與和建構實際之專案,過程中欠缺了自動化的概念。本研究旨在以資料探勘技術分析大眾與城市色彩意象之連結,並將考察及分析過程自動化,研究所產出之結果,可提供於設計及其相關應用做為參考。 本研究以交通部觀光局所選出十大觀光小鎮為主要研究對象,並以日本色彩學家小林重順(Shigenobu Kobayashi)於Color Image Scale中,所提出的城市形容詞作為關鍵字,分別以Word to vector和Google關鍵字搜尋兩種方式,找出城市和形容詞之關聯性,在進行交叉比對作為資料探勘技術的關鍵字以建立城市樣本圖片集,而後以Color-Thief取出顏色並且輔以Color Image Scale作為顏色校正之依據,進而取得自動化色彩組合之結果。研究結果顯示,具有特定特色景點或特產的城市,搭配關鍵形容詞,其城市色彩組合之意象會特別明顯,自動化色彩組合之結果亦符合大眾之滿意程度。
  • Item
    運用資料探勘於自動化色彩語意分析之研究
    (2019) 陳佳安; Chen, Chia-An
    電腦科技與資料科學的發展,促使色彩分析方式產生轉變,運用機器學習理論解讀色彩語意。透過跨領域技術整合,將色彩語意分析與實務應用引入更有效率、更低成本的分析方法,為本研究最具價值之處。本研究提出一個全新的色彩語意分析方法,配合網路大數據、卷積神經網路以及改良式中位切割演算法等資料探勘方式,分析詞彙的色彩意象,得出詞彙具體的對應RGB值;再依據調和配色理論,自動產出配色組合。最後透過問卷調查,評估色彩語意分析方法實際應用的可行性。 研究結果顯示,本研究提出之色彩語意分析方法,符合過去文獻與問卷調查之結果,並能找到詞彙對應之色彩趨勢,可省卻心理實驗的時間與人力成本,並且更有彈性。透過將調和配色理論數值化定義,產出之兩組配色應用設計(相似配色、補色配色),不僅能在短時間內產出大量色彩組合,且相較於人們依照直覺的配色,此方法更為客觀。將兩組配色應用設計之色彩組合與配色網站Adobe CC使用者配色比較詞彙之間的符合程度,其中一組符合程度稍差,另一組符合程度則與使用者提出的色彩組合相近,顯示此配色方法雖尚不及人為的配色操作,但仍具有極大發展與進步空間。