行政單位
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/14
Browse
1 results
Search Results
Item 缺失資料在因素分析上的處理方法之研究(國立臺灣師範大學, 2012-03-??) 王鴻龍; 楊孟麗; 陳俊如; 林定香; Hong-Long; Wang Meng-Li Yang; Chun-Ju Chen; Ting-Hsiang Lin因素分析常用來研究問卷及量表。當資料缺失過多或缺失機制為非完全隨機時,分析所得的共同因素個數或因素負荷常有偏差。本研究使用「台灣教育長期追蹤資料庫」,將其中的完整資料視為基準資料,並根據原有缺失結構,建構一至五倍缺失比率的資料集,以探討因素分析對缺失插補的敏感度。研究者比較了四種缺失處理法,包括:可用個體法、完整個體法、邏輯斯迴歸插補法與蒙第卡羅-馬可夫鏈(Monte Carlo Markov Chain, MCMC)插補法。結果顯示,缺失比率愈高時,所估計出來的變異數矩陣與基準資料的矩陣差異愈大。可用個體法在缺失比率較高時,萃取的共同因子的個數比基準資料多。在因素負荷上,可用個體法的誤差最嚴重,而完整個體法雖然和其他兩種插補法的誤差接近,不過會因缺失比率的增加與基準的誤差而隨之變大。研究者建議在缺失比率20%~30%或以上時,使用邏輯斯迴歸插補法或是蒙第卡羅-馬可夫鏈插補法後再進行因素分析會有較小的誤差。