資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
36 results
Search Results
Item 深度學習輔助的基於分佈的集成科學資料統計視覺化與分析(2025) 黃瀚; Huang, Han為了透過計算機模擬研究複雜的現實世界現象,科學家通常依賴從多次模擬運行中生成的集合數據集,這些模擬運行使用不同的參數配置。這一過程會生成極大規模的數據集,導致傳統的數據分析流程因有限的I/O帶寬和磁盤容量而變得相當侷限。基於分布的數據表示已被提出作為一個可能的解決方案。通過原位資料處理來生成緊湊的基於分布的表示,不僅緩解了有限的I/O帶寬和磁盤容量的挑戰,還能實現不確定性量化,從而減少誤解的風險。然而,基於分布的方法本質上會犧牲數據樣本的空間信息,可能會降低數據分析流程中的精確度。為了解決這一問題,我們引入了一種深度學習模型來從分布表示中重建數據體積。我們並不使用直接從分布表示預測數據塊的模型,而是提出了一種基於Gumbel-Sinkhorn神經網絡(GSNN)的深度學習模型,它學習將從塊的分布中抽取的樣本映射到塊內的空間位置。該深度學習模型不僅支持高質量的後續數據分析和可視化,還能提供逐點不確定性量化,並保證重建的數據塊分布與其分布表示一致。Item 競速直排輪不良姿勢偵測分析(2025) 宋立晴; Sung, Li-Ching競速直排輪運動要求學員在訓練中保持正確姿勢,以提升運動表現並減少傷害風險。然而,膝蓋與腳踝的常見姿勢問題對初學者的學習造成挑戰。隨著影像處理和人體姿態偵測技術的發展,將這些技術應用於運動姿勢分析為量化學員的姿勢表現提供了新方法,能輔助教學與學習過程。本研究採用OpenPose作為人體姿態偵測工具,結合影像處理與數據分析技術,量化學員在直排輪練習過程中的膝蓋與腳踝角度特徵,並針對特定的姿勢問題進行分類與評估。實驗設計分為四個階段:第一階段開發步伐週期自動偵測系統,透過分析關鍵點座標自動切割完整步伐;第二階段驗證姿勢辨識的準確度,將系統判定結果與教練提供的標準(Ground Truth)進行比對評估系統表現;第三階段分析學員的姿勢表現,通過數據生成針對性的回饋評論;第四階段探討髖部位移與重心偏移的相關性,並利用動態閾值方法檢測滑行過程中的異常幀,分析異常對關節點偵測與姿勢分析的影響。研究結果顯示,自動步伐偵測系統展現出75.37%的F1分數,能有效識別大部分的步伐週期,為未來全自動化姿勢分析奠定基礎。在後續的姿勢分析實驗中,為確保判斷的準確性,採用人工標記的步伐進行評估。結合影像處理與姿態偵測技術,可以有效量化學員的滑行姿勢表現,對膝蓋與腳踝等關鍵部位的姿勢特徵進行深入分析,並提供清晰的數據回饋,幫助學員理解與改善不良姿勢。本研究為競速直排輪運動中的姿勢分析提供了系統化解決方案,未來可進一步拓展至其他運動項目與即時偵測應用。Item 基於Transformer的化合物-蛋白質交互作用預測方法之改進(2025) 陳威宇; Chen, Wei-Yu近年來,化合物-蛋白質交互作用 (Compound-Protein Interaction, CPI) 預測已經成為計算化學領域的研究熱點之一。隨著深度學習技術的興起,越來越多的基於神經網路的CPI預測方法得到了開發和應用。其中,Transformer模型是採用自注意力機制 (Self-attention) 的深度學習模型,具有強大的建模能力,因此有越來越多模型使用了此方法。不過,基於此方法的模型在預測CPI的任務上存在著一些問題,例如訓練的成本太大、對於3D空間相互作用的捕捉能力較弱等,而這些問題也影響到預測的準確率。為了找到比傳統Transformer還更能準確預測的方法,我們從模型架構、輸入特徵的選擇以及損失函數等面向尋找改進的方法,期望能找出可以提升準確率,甚至降低運算成本的方法。本論文以CAT-CPI (Ying et al., 2022) 的模型架構為基礎,結合TransformerCPI (Chen et al., 2020) 對於化合物特徵的提取方式,提出了基於Transformer的CPI預測之改進方法。TransformerCPI針對一維的SMILES序列產生了對應的原子特徵,而CAT-CPI則是使用二維的化合物圖像作為輸入,利用CNN學習化合物圖像的局部細節特徵,並且取得了優秀的結果。因此本模型結合兩者的特色,同時以一維的原子特徵和二維的分子圖像作為輸入,利用不同的化學結構資訊互補來提高模型的預測能力。此外我們也嘗試以Performer、Conformer等不同的架構取代傳統的Transformer來提升預測的準確率與運算的速度,並觀察不同的損失函數 (Loss Functions) 對於訓練結果的影響。我們使用Human、Celegans以及Davis資料集對所有改進方法進行實驗,發現與只使用分子圖像的方法相比,原子特徵與分子圖像結合的輸入能有效提升預測的準確率,且以Performer和Conformer等模型取代Transformer也可些微提升預測的能力。Item Multiple Policy Value MCTS 結合 Population Based Training 加強連四棋程式(2024) 蔡宜憲; Tsai, Yi-Sian電腦對局是人工智慧在計算機科學和工程方面的最古老和最著名的應用之一,而AlphaZero在棋類對局領域是一個非常強大的強化學習算法。AlphaZero是用了MCTS與深度神經網路結合的演算法。較大的神經網路在準確評估方面具有優勢,較小的神經網路在成本和效能方面具有優勢,在有限的預算下必須兩者取得平衡。Multiple Policy Value Monte Carlo Tree Search此方法結合了多個不同大小的神經網路,並保留每個神經網路的優勢。本研究以Surag Nair先生在GitHub上的AlphaZero General程式做修改,加入Multiple Policy Value Monte Carlo Tree Search,並實現在連四棋遊戲上。另外在程式中使用了Multiprocessing來加快訓練速度。最後使用了Population Based Training的方式來尋找較佳的超參數。Item 基於深度學習對籃球轉播影像之球場校正及球員追蹤(2024) 連堃玹; Lian, Kun-Syuan許多球類競技運動使用視覺影像資料來識別戰術,並採用相對應的防守策略來應對,以最有效率的方式獲取分數。這些分析資訊採用的研究數據來源在於球員在球場上的位置變化,即軌跡資訊。通常仰賴人力透過逐幀的方式針對球隊的軌跡進行剖析,這往往需要耗費大量的時間與精力。此外,發展技術成熟的光學影像追蹤系統其背後所需要的器材成本及後續維護的費用使其難以普及使用。近年來,由於拍攝器材以及多媒體串流技術的進步,網路上有豐富且大量的轉播資訊提供獲取比賽資訊另一種途徑。因此,本研究基於籃球影像畫面提出了球員定位及追蹤軌跡方法 (Basketball Player Position Tracking Trajectory, BPT),基於轉播影像自動化生成球員在比賽過程中的軌跡資料。本研究所提出的BPT校正方法僅需使用籃球轉播系統的影像畫面作為輸入,即可生成雙方球隊在每次的攻防過程中的實際軌跡資訊,為後續的進階應用資訊分析提供重要的資訊來源。在BPT方法中,由轉播影像的球場校正方法與球員追蹤方法兩個模組所組成。在球場校正方法中,以三階段的深度模型任務實現端對端預測校正單應性矩陣。在球員追蹤方面,本研究基於追蹤演算法獲得初步的追蹤結果,通過BPT方法中的特徵模型提取更具鑑別度的球員特徵,結合貪婪合併軌跡的方式將片段的軌跡重新關聯,以達到更穩定的追蹤效果。實驗結果顯示,在球場校正準確性方面,採用交集比 (Intersection over Union, IoU) 評估校正的準確程度,在半場校正準確率高達到 87%。在球員追蹤的準確度採用高階追蹤準確率 (Higher Order Tracking Accuracy, HOTA) 評估多目標追蹤的成效。整體對球員的追蹤準確度可達 77%。根據使用情境,選擇適當的追蹤門檻值,最終採用最佳的追蹤演算法結合本研究的BPT方法,在球員追蹤準確率可高達 82%。Item 基於深度學習之鯨豚個體身分辨識系統(2024) 蔡妤涓; Tsai, Yu-Chuan本研究提出一個基於深度學習之鯨豚個體身分辨識系統,希望透過鯨豚個體身分辨識的技術,追蹤鯨豚遷徙路徑來估算鯨豚族群數量,進一步評估和保護海洋生態系統的健康。研究目標為辨識同一物種內不同鯨豚個體的生物特徵,以及同一隻鯨豚在不同拍攝環境下的影像特徵差異。由於鯨豚資料集中存在影像品質不穩定和個體影像數量極不平均的問題,故本研究著手解決這些問題,包含資料前處理(Data Preprocessing)、提出模型改良方法,及不同面向的測試方法。本系統首先對鯨豚資料集進行資料前處理,接著進行鯨豚偵測,最後作鯨豚個體身分辨識。資料集前處理包括資料清理(Data Cleaning)和資料增強(Data Augmentation),其目的在解決資料集中的潛在問題。在鯨豚偵測階段,採用YOLOv5定位鯨豚位置,過濾背景雜訊以增加模型訓練速度。在鯨豚個體身分辨識階段,利用骨幹模型(Backbone Model)從鯨豚影像中提取特徵,並使用頭部模型(Head Model)進行個體身分預測。本研究使用EfficientNetV1-B4作為骨幹模型,頭部模型使用附加角度邊界損失函數(ArcFace)。針對資料集問題對頭部模型進行改良,以提高鯨豚個體身分辨識的正確率。透過在ArcFace加入子中心(Sub-center)向量,解決同一隻鯨豚在不同拍攝環境下的影像特徵差異的問題,從而提升鯨豚個體身分辨識的正確率。此外,引入動態邊界(Dynamic Margin)解決在訓練階段鯨豚個體影像數量極不平均的問題,加快模型的收斂速度。實驗結果顯示改良後的子中心附加角度邊界損失函數在三個面向的測試 實際應用情況、多數合成資料庫(Synthetic Data),和部分合成資料庫(影像數量3張以上的鯨豚個體)之mAP分別為68.63%、81.60%和35.70%。相較於原始的ArcFace提升4.83%、6.08%和8.19%。另外,將動態邊界應用於子中心附加角度邊界損失函數的改良方案,在維持相當正確率相當的情況下,減少28%的訓練時間。由實驗結果發現,本研究所提出的改良方案能對資料集問題進行適當處理並提升鯨豚個體身分辨識的準確率。Item 以注意力模塊、殘差連接建構之雨量深度學習超解析度模型(2023) 江家浩; Chiang, Chia-Hao人口的過度增長、土地的開發以及化石能源的消耗在近百年來造成地球氣候的變遷。自然災害發生的頻率也因此增加,並造成許多人類的傷亡以及產業的經濟損失。為了減緩自然的衝擊與資源的消耗,各國政府機關制定了相關政策,以減緩消耗;科學家們研發全新的、乾淨的替代能源,另一方面,氣象學家們則是藉由模型的建構,來模擬並預測這些極端事件的發生,以利人們在災害來臨之前做好準備,減少損失。其中,以水資源的影響最為深遠,它是地球中最基本也是重要的循環之一,同時也是占比最重的溫室氣體,且與人類活動息息相關。我們以台灣為例,台灣雖然年降雨平均高達2,500毫米,然而人均水資源卻是低於全球平均值。這是因為台灣的崎嶇地形特色所致,再加上季風與洋流的作用,使得降水的時空間分布不均。若能預測雨量的分布,則可訂定相關的防洪或者儲水建設,以降低災害並最大化水資源的利用,故一個準確且高解析度的預測模型一直是科學家們努力研究的方向之一。現今普遍的做法是將氣象模型的模擬資料做降尺度來提升解析度以供區域性的參考。然而這些預測模型所消耗的計算資源甚鉅,且解析度有限,很難提供疆域小且地形交互作用複雜的地區有準確的預測結果。我們提出了一個以深度學習為基礎,並結合殘差連接、注意力模塊的超解析度模型,可望提升現有的氣象模型所產出之低解析度的結果之準確性和解析度。文末,我們也比較了其他氣象降尺度的方法和其他機器學習為基礎的模型,並在四種指標(平均絕對誤差、方均根誤差、皮爾森係數、結構相似性)、定量降雨預報檢測中優於其他氣象降尺度的方法。Item 噪聲學習:漸進式的樣本選擇(2023) 王景用; Wang, Jing-Yong在人工智慧蓬勃發展的年代,深度學習技術在不同的影像辨識工作中,都取得不錯的成果,然而這些計算模型的訓練任務往往都是建立在乾淨資料集上做的實驗。然而創建一個乾淨大型資料集往往都需要龐大的標注成本,甚至在一些大型的開源資料集中也有一些人為的標記錯誤出現。為了降低建構資料集的成本以及錯誤標籤對模型的影響,噪聲學習主要研究如何在有標記錯誤的資料集中訓練出穩定可用的模型。在過去的研究中,篩選乾淨樣本的技術,如高斯混合模型或是JS散度技術,都無法準確將所有的乾淨樣本篩選出來。因此,本文從模型預測穩定度的觀點,結合過去相關研究中加入KNN演算法,利用模型預測的穩定度與樣本特徵的相似度進行多階段的篩選。參考近期論文的設計,在雙模型架構設計下,我們發現在訓練前期KNN模型的預測能力比雙模型的預測能力還要差。為了有效利用雙模型的預測結果和KNN模型,我們用模型預測穩定度的指標,漸進式的使用KNN模型,幫助我們過濾出乾淨標籤以及噪聲樣本。實驗結果可以看到我們的方法在不同的噪聲類型、不同的噪聲率下都能有不錯的表現,證明我們方法的有效性。Item 視覺式智慧型高爾夫揮桿動作姿勢分析系統(2022) 石展兢; Shih, Chan-Ching全球參與高爾夫這項運動的人口數量正在逐步上升,根據世界高爾夫管理機構皇家古老高爾夫俱樂部(The R&A)公布2021年的全世界高爾夫球人數為6,660萬人,超越了2012年的6,160萬人來到歷史高點,可見高爾夫球己經成為全世界普及的運動。近年來運動科技興起,將運動與科技兩者相互結合,利用智慧化訓練能夠有效幫助運動員提升訓練品質並降低運動傷害發生。本研究以高爾夫運動為基礎,為避免高爾夫揮桿姿勢錯誤導致運動傷害,因此開發出一套視覺式智慧型高爾夫揮桿動作姿勢分析系統,讓使用者能夠隨時隨地將自身和教練兩者的高爾夫揮桿姿勢相互比較,可達到自行修正高爾夫揮桿姿勢之目的。 視覺式智慧型高爾夫揮桿動作姿勢分析系統輸入使用者之高爾夫揮桿影片以及教練之高爾夫揮桿影片進行高爾夫揮桿姿勢比對分析。本系統主要分為兩大步驟:高爾夫揮桿分解動作擷取以及三維人體模型姿勢比對分析。在第一步驟中,本研究使用輕量級網路ShuffleNetV2和循環神經網路Bi-GRU進行改良後擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作。在第二步驟中,利用擷取出使用者以及教練兩者的高爾夫揮桿八個分解動作分別建構出可以表現出豐富人體資訊的三維人體模型,接著使用三維人體模型進行使用者以及教練的高爾夫揮桿姿勢比對分析。 本研究將高爾夫揮桿動作拆解成八個分解動作,依序是擊球準備(address)、起桿(toe-up)、上桿(mid-backswing)、上桿頂點(top)、下桿(mid-downswing)、擊球(impact)、送桿(mid-follow-through)以及收桿(finish)。本研究使用GolfDB資料集[Mcn19]所蒐集的高爾夫揮桿影片進行訓練及測試,實驗結果顯示高爾夫揮桿分解動作擷取之準確率為86.15%。另外,本研究採用之三維人體模型是由6,890個節點所組成的人體網格,該模型將人體分解成24個身體部位,實驗時利用該模型之擬真人體特性能夠更精準地判斷使用者及教練之高爾夫揮桿姿勢差異。如上所述,本研究所提出之視覺式智慧型高爾夫揮桿動作姿勢分析系統具有效性。Item 運用類神經網路方法分析基於面向的情感極性分類(2022) 王皓平; Wang, Hao-Ping隨著時代以及科技技術的成長,人們不像過去一樣,需要查看報紙、購買雜誌、詢問左右鄰居的情報才能知道自己想要得知的資訊。在科技技術的成長下,不管是餐廳的評價、筆記型電腦的實用程度,大部分的人們都可以使用網際網路來查看是否有所想要的資訊。本論文使用的資料集由SemEval-2014 Task 4官方所提供,並且含有四項子任務:(一) Aspect term extraction、(二) Aspect term polarity、(三) Aspect category detection、(四) Aspect category polarity,本論文進行第二項子任務研究,判斷出句子中的面向詞是正面、負面或中立,評估方式採用Accuracy,並且與當年競賽結果相比較。本論文實驗方法將資料先進行前處理並且轉成詞向量作為輸入的來源,以及將極性做情感標籤,並且使用Bi-LSTM (Bi-directional Long Short-Term Memory)、Self-attention(自注意力機制)及使用Two-level encoding對資料進行訓練。最後去比對每種不同模型的準確率,結果顯示Two-level encoding預測準確率餐廳達82%,筆記型電腦則達78%。